【题目】如图,△ABE是⊙O的内接三角形,AB为直径,过点B的切线与AE的延长线交于点C,D是BC的中点,连接DE,连接CO,线段CO的延长线交⊙O于F,FG⊥AB于G. ![]()
(1)求证:DE是⊙O的切线;
(2)若AE=4,BE=2,求AG的长.
【答案】
(1)证明:连接OE,OD,
在△OED与△OBD中,
,
∴△OED≌△OBD,
∴∠OED=∠OBD,
∵BC是⊙O的切线,
∴∠OBD=90°,
∴∠OED=90°,
∴OE⊥ED,
∴DE是⊙O的切线;
![]()
(2)解:∵AB为⊙O的直径,
∴∠AEB=90°,
∴AB=
=2
,
∴OF=OB=
,
∵△AEB∽△BEC,
∴
,
∴BC=
=
,
∴OC=
=
=
,
∵∠AOF=∠BOC,
∵FG⊥AB,
∴∠FGO=90°,
∴∠FGO=∠OBC=90°,
∴△OFG∽△OBC,
∴
,
∴OG=
OB=
,
∴AG=AO﹣OG=
﹣
.
【解析】(1)连接OE,OD,根据全等三角形的性质得到∠OED=∠OBD,由BC是⊙O的切线,得到∠OBD=90°,于是得到结论;(2)由AB为⊙O的直径,得到∠AEB=90°,根据勾股定理得到AB=
=2
,求得OF=OB=
根据相似三角形的性质得到BC=
=
,根据勾股定理到OC=
=
=
,根据相似三角形的性质即可得到结论.
科目:初中数学 来源: 题型:
【题目】如图,在△ABD中,AB=AD,以AB为直径的⊙F交BD于点C,交AD与点E,CG⊥AD于点G. ![]()
(1)求证:GC是⊙F的切线;
(2)填空:①若△BCF的面积为15,则△BDA的面积为
②当∠GCD的度数为时,四边形EFCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料,并按要求完成相应的任务.
几何中,平行四边形、矩形、菱形、正方形和等腰梯形都是特殊的四边形,大家对于它们的性质都非常熟悉,生活中还有一种特殊的四边形﹣﹣筝形.所谓筝形,它的形状与我们生活中风筝的骨架相似. |
|
如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:
如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:
(1)请说出筝形和菱形的相同点和不同点各两条;
(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:
①顶点都在格点上;
②所设计的图案既是轴对称图形又是中心对称图形;
③将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影).![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠B=90°,BC=3,AB=4,D是边AB上一点,DE∥BC交AC于点E,将△ADE沿DE翻折得到△A′DE,若△A′EC是直角三角形,则AD长为 . ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC,点M在AC边上,且AM=1,MC=4,动点P在AB边上,连接PC,PM,则PC+PM的最小值是( )![]()
A.![]()
B.6
C.![]()
D.7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,点D在边AC上,DE⊥B于点E,连CE.
(1)如图1,已知AC=BC,AD=2CD,![]()
①△ADE与△ABC面积之比;
②求tan∠ECB的值;
(2)如图2,已知
=
=k,求tan∠ECB的值(用含k的代数式表示).![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知双曲线y=
(x>0),直线l1:y﹣
=k(x﹣
)(k<0)过定点F且与双曲线交于A,B两点,设A(x1 , y1),B(x2 , y2)(x1<x2),直线l2:y=﹣x+
.
(1)若k=﹣1,求△OAB的面积S;
(2)
若AB=
, 求k的值;
(3)设N(0,2
),P在双曲线上,M在直线l2上且PM∥x轴,求PM+PN最小值,并求PM+PN取得最小值时P的坐标.
(参考公式:在平面直角坐标系中,若A(x1 , y1),B(x2 , y2)则A,B两点间的距离为AB=
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com