精英家教网 > 初中数学 > 题目详情
如图,在梯形ABCD中,AB∥CD,∠ABC=90°,DC=BC,E是梯形内一点,F是梯形外一点,且∠EDC=∠FBC,DE=BF,
(1)证明:CE⊥CF;
(2)当BE:CE=1:2,∠BEC=135°时,求sin∠EBF的值.

【答案】分析:(1)由已知条件易证△DEC≌△BFC,由∠ECD,∠BCF都和∠BCE互余,即证CE⊥CF;
(2)连接EF,由(1)易得△CEF为等腰直角三角形,∠BEF=90°,设BE=k,用k分别表示EF,BF,则在直角三角形BEF中,即可求sin∠EBF的值.
解答:(1)证明:∵∠EDC=∠FBC,DE=BF,DC=BC
∴△DEC≌△BFC(2分)
∴∠ECD=∠FCB(3分)
∵∠BCD=90°
∴∠ECD+∠BCE=90°,
∴∠FCB+∠BCE=90°
∴CE⊥CF;(5分)

(2)解:连接EF,由(1)得:△DEC≌△BFC,∴CE=CF
又CE⊥CF,∴∠CEF=45°(6分)
又∠BEC=135°,∴∠BEF=90°(7分)
由∵BE:CE=1:2,
∴设BE=k,CE=2k,∴
(9分)
.(10分)
点评:本题考查了全等三角形的判定,直角三角形的性质以及三角函数和勾股定理的综合运算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案