【题目】在△ABC中,AB=BC,∠B=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.
(1)如果点D在线段BC上运动,如图1:
①依题意补全图1;
②求证:∠BAD=∠EDC;
③通过观察、实验,小明得出结论:在点D运动的过程中,总有∠DCE=135°,.
小明与同学讨论后,形成了证明这个结论的几种想法:
想法一:在AB上取一点F,使得BF=BD,要证∠DCE=135°,只需证△ADF≌△DEC.
想法二:以点D为圆心,DC为半径画弧交AC于点F,要证∠DCE=135°,只需证△AFD≌△DCE.
想法三:过点E作BC所在直线的垂直线段EF,要证∠DCE=135°,只需证EF=CF.
请你参考上面的想法,证明∠DCE=135°
(2)如果点D在线段CB的延长线上运动,利用图2画图分析,∠DCE的度数还是确定的值吗?如果是,直接写出∠DCE的度数;如果不是,说明理由.
![]()
【答案】(1)①见解析;②证明见解析;③证明见解析;(2)∠DCE=45°.
【解析】
(1)①根据题意作出图形即可;②根据余角的性质得到结论;③证法1:在AB上取点F,使得BF=BD,连接DF,根据等腰直角三角形的性质得到∠BFD=45°,根据全等三角形的性质得到∠DCE=∠AFD=135°;证法2:以D为圆心,DC为半径作弧交AC于点F,连接DF,根据全等三角形的性质即可得到结论;证法3:过点E作EF⊥BC交BC的延长线于点F,根据全等三角形的性质即可得到结论;
(2)过E作EF⊥DC于F,根据全等三角形的性质得到DB=EF,AB=DF=BC,根据线段的和差得到FC=EF,于是得到结论.
解:(1)①如图①所示;
![]()
②证明:∵∠B=90°,
∴∠BAD+∠BDA=90°,
∵∠ADE=90°,点D在线段BC上,
∴∠BAD+∠EDC=90°,
∴∠BAD=∠EDC;
②证法1:如图,在AB上取点F,使得BF=BD,连接DF,
![]()
∵BF=BD,∠B=90°,
∴∠BFD=45°,
∴∠AFD=135°,
∵BA=BC,
∴AF=CD,
在△ADF和△DEC中,
![]()
∴△ADF≌△DEC,
∴∠DCE=∠AFD=135°;
证法2:以D为圆心,DC为半径作弧交AC于点F,连接DF,
![]()
∴DC=DF,∠DFC=∠DCF,
∵∠B=90°,AB=BC,
∴∠ACB=45°,∠DFC=45°,
∴∠DFC=90°,∠AFD=135°,
∵∠ADE=∠FDC=90°,
∴∠ADF=∠EDC,
在△ADF≌△CDE中,
,
∴△ADF≌△CDE,
∴∠AFD=∠DCE=135°;
证法3:过点E作EF⊥BC交BC的延长线于点F,
![]()
∴∠EFD=90°,
∵∠B=90°,
∴∠EFD=∠B,
在△ABD和△DFE中,
,
∴△ABD≌△DFE,
∴AB=DF,BD=EF,
∵AB=BC,
∴BC=DF,BC﹣DC=DF﹣DC,
即BD=CF,
∴EF=CF,
∵∠EFC=90°,
∴∠ECF=45°,∠DCE=135°;
(2)解:∠DCE=45°,
理由:过E作EF⊥DC于F,
![]()
∵∠ABD=90°,
∴∠EDF=∠DAB=90°﹣∠ADB,
在△ABD和△DFE中,
,
∴△ABD≌△DFE,
∴DB=EF,AB=DF=BC,
∴BC﹣BF=DF﹣BF,
即FC=DB,
∴FC=EF,
∴∠DCE=45°.
科目:初中数学 来源: 题型:
【题目】绿色出行是对环境影响最小的出行方式,“共享单车”已成为北京的一道靓丽的风景线.某社会实践活动小
组为了了解“共享单车”的使用情况,对本校教师在3月6日至3月10日使用单车的情况进行了问卷调查,
以下是根据调查结果绘制的统计图的一部分:
![]()
请根据以上信息解答下列问题:
(1)3月7日使用“共享单车”的教师人数为人,并请补全条形统计图;
(2)不同品牌的“共享单车”各具特色,社会实践活动小组针对有过使用“共享单车”经历的教师做了进一步调查,每位教师都按要求选择了一种自己喜欢的“共享单车”,统计结果如图,其中喜欢
的教师有36人,求喜欢
的教师的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角三角形
中,
,点
,
分别为
,
的中点,将
沿
翻折,得到
,
的延长线交
于点
.
![]()
(1)判断
的形状为 ;
(2)当
时,求证四边形
为正方形;
(3)若
,连接
,当
时,直接写出
的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为某区域部分交通线路图,其中直线
,直线
与直线
、
、
都垂直,垂足分别点
、点
和点
,(高速路右侧边缘),
上的点
位于点
的北偏东
方向上,且
千米,
上的点
位于点
的北偏东
方向上,且
,
千米.点
和点
是城际线
上的两个相邻的站点.
![]()
(1)求
和
之间的距离;
(2)若城际火车平均时速为
千米/小吋,求市民小强乘坐城际火车从站点
到站点
需要多少小时?(结果用分数表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点A,B,C三点在⊙O上,AE平分∠BAC,交⊙O于点E,交BC于点D,过点E作直线l∥BC,连结BE.
(1)求证:直线l是⊙O的切线;
(2)如果DE=a,AE=b,写出求BE的长的思路.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公园的人工湖边上有一座假山,假山顶上有一竖起的建筑物CD,高为10米,数学小组为了测量假山的高度DE,在公园找了一水平地面,在A处测得建筑物点D(即山顶)的仰角为35°,沿水平方向前进20米到达B点,测得建筑物顶部C点的仰角为45°,求假山的高度DE.(结果精确到1米,参考数据:sin35°≈
,cos35°≈
,tan35°≈
)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形
中,对角线
,
,动点
、
分别从点
、
同时出发,运动速度都是
,点
由
向
运动;点
由
向
运动,当
到达
时,
、
两点运动停止,设时间为
秒(
).连接
,
,
.
![]()
(1)当
为何值时,
;
(2)设
的面积为
,请写出
与
的函数关系式;
(3)当
为何值时,
的面积是四边形
面积的
?
(4)是否存在
值,使得线段
经过
的中点
?若存在,求出
值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知直线l1:y=mx(m≠0) 与直线l2:y=ax+b(a≠0) 相交于点 A(1,2),直线l2与 x轴交于点B(3,0).
![]()
(1)分别求直线l1 和l2的表达式;
(2)过动点P(0,n)且平行于x轴的直线与l1 ,l2的交点分别为C ,D,当点 C 位于点 D 左方时,写出 n的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究函数
的图象与性质.
小东根据学习函数的经验,对函数
的图象与性质进行了探究.
下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数
的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值,求m的值;
x | … |
|
|
|
|
|
|
| 1 | 2 | 3 | 4 | … |
y | … |
|
|
|
|
|
|
|
|
|
| m | … |
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是
,结合函数的图象,写出该函数的其它性质(一条即可) .
(5)根据函数图象估算方程
的根为 .(精确到0.1)
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com