13£®Ä³ÊÐΪÁ˹ÄÀø¾ÓÃñ½ÚÔ¼ÓÃË®£¬²ÉÓ÷ֶμƷѵķ½·¨°´Ô¼ÆËãÿ»§¼ÒÍ¥µÄË®·Ñ£¬ÔÂÓÃË®Á¿²»³¬¹ý20m3ʱ£¬°´2.5Ôª/m3¼Æ·Ñ£»ÔÂÓÃË®Á¿³¬¹ý20m3ʱ£¬ÆäÖеÄ20m3ÈÔ°´2.5Ôª/m3ÊÕ·Ñ£¬³¬¹ý²¿·Ö°´3.5Ôª/m3¼Æ·Ñ£¬Éèÿ»§¼ÒÍ¥ÓÃË®Á¿Îªxm3ʱ£¬Ó¦½»Ë®·ÑyÔª£®
£¨1£©µ±0£¼x¡Ü20ʱ£¬y=2.5x£¨Óú¬xµÄ´úÊýʽ±íʾ£©£»µ±x£¾20ʱ£¬y=3.5x-20£¨Óú¬xµÄ´úÊýʽ±íʾ£©£»
£¨2£©Ð¡Ã÷¼ÒµÚ¶þ¼¾¶È½»ÄÉË®·ÑµÄÇé¿öÈçÏ£º
Ô    ·Ý4Ô·Ý5Ô·Ý6Ô·Ý
½»·Ñ½ð¶î40Ôª45Ôª57Ôª
ÇóСÃ÷¼ÒµÚ¶þ¼¾¶ÈµÄÓÃË®Á¿£®

·ÖÎö £¨1£©µ±0£¼x¡Ü20ʱµÄÊշѱê×¼ÊÇ£º2.5Ôª/m3¼Æ·Ñ£»µ±x£¾20ʱµÄÊշѱê×¼ÊÇ£ºÔÂÓÃË®Á¿³¬¹ý20m3ʱ£¬ÆäÖеÄ20m3ÈÔ°´2.5Ôª/m3ÊÕ·Ñ£¬³¬¹ý²¿·Ö°´3.5Ôª/m3¼Æ·Ñ£¬Áгö´úÊýʽ¼´¿É£»
£¨2£©ÓÉÌâÒâ¿ÉµÃ£ºÒòΪËÄÔ·ݡ¢ÎåÔ·ݽɷѽð¶î²»³¬¹ý50Ôª£¬ËùÒÔÓÃy=2.5x¼ÆËãÓÃË®Á¿£»ÁùÔ·ݽɷѽð¶î³¬¹ý50Ôª£¬ËùÒÔÓÃy=3.5x-20¼ÆËãÓÃË®Á¿£®

½â´ð ½â£º£¨1£©µ±0¡Üx¡Ü20ʱ£¬yÓëxµÄº¯Êý±í´ïʽÊÇ£ºy=2.5x£»
µ±x£¾20ʱ£¬yÓëxµÄº¯Êý±í´ïʽÊÇ£ºy=2.5¡Á20+3.5£¨x-20£©=3.5x-20£»
¹Ê´ð°¸Îª£º2.5x£¬3.5x-20£»

£¨2£©Ð¡Ã÷¼Ò4Ô·ÝÓÃË®Á¿Î´³¬¹ý20m3£¬Ôò2.5x=40£¬
½âµÃ£ºx=16
СÃ÷¼Ò5Ô·ÝÓÃË®Á¿Î´³¬¹ý20m3£¬Ôò2.5x=45£¬
x=18£¬
СÃ÷¼Ò6Ô·ÝÓÃË®Á¿³¬¹ý20m3£¬3.5x-20=57£¬
½âµÃ£ºx=22£¬
ÔòСÃ÷¼ÒµÚ¶þ¼¾¶ÈµÄÓÃË®Á¿Îª£º16+18+22=56£¨m3£©£®

µãÆÀ ´ËÌ⿼²éÁËÁдúÊýʽ£¬¶Á¶®Í¼±íÐÅÏ¢Àí½â·Ö¶ÎÊշѱê×¼ÊǽâÌâµÄ¹Ø¼ü£¬ÄѵãÔÚÓÚ¸ù¾Ý½»·Ñ½ð¶îÅжϳö¸÷ÔÂÓÃË®Á¿ËùÔڵĵµ´Î£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®¼ÆË㣺£¨$\frac{1}{3}$£©-2+£¨-2£©0µÈÓÚ£¨¡¡¡¡£©
A£®10B£®9C£®7D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®2015Äꡰ˫ʮһ¡±¹ºÎï½ÚÆÚ¼ä£¬ÎÒÏØÄ³×¨ÂôµêҲץסÓÐÀûÉÌ»úÍÆ³öÈ«µê´ò8ÕÛµÄÓŻݻ£¬³Ö¹ó±ö¿¨¿ÉÔÚ8ÕÛ»ù´¡ÉÏÔÙ´ò9ÕÛ£¬Ð¡Ã÷ÂèÂè³Ö¹ó±ö¿¨ÂòÁËÒ»¼þÉÌÆ·¹²»¨ÁË360Ôª£¬Ôò¸ÃÉÌÆ·µÄ±ê¼ÛÊÇ£¨¡¡¡¡£©
A£®420ÔªB£®500ÔªC£®540ÔªD£®480Ôª

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÓÐÀíÊýa£¬b£¬cÔÚÊýÖáÉϵÄλÖÃÈçͼËùʾ£¬Ôò|a-c|-|a-b|-|b-c|=2a-2b£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£¬ËıßÐÎABCDÄÚ½ÓÓÚ¡ÑO£¬BCµÄÑÓ³¤ÏßÓëADµÄÑÓ³¤ÏßÏཻÓÚµãE£¬ÇÒDC=DE£®ÇóÖ¤£º¡ÏA=¡ÏAEB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª|x+1|+£¨y-2£©2=0£¬Ôò2x+3y=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®¹Û²ìÏÂÁи÷ʽ£º
$\frac{1}{1¡Á2}$+$\frac{1}{2¡Á3}$=£¨$\frac{1}{1}$-$\frac{1}{2}$£©+£¨$\frac{1}{2}$-$\frac{1}{3}$£©=1-$\frac{1}{3}$=$\frac{2}{3}$£®
$\frac{1}{1¡Á2}$+$\frac{1}{2¡Á3}$+$\frac{1}{3¡Á4}$=£¨$\frac{1}{1}$-$\frac{1}{2}$£©+£¨$\frac{1}{2}$-$\frac{1}{3}$£©+£¨$\frac{1}{3}$-$\frac{1}{4}$£©=1-$\frac{1}{4}$=$\frac{3}{4}$£®
¡­
£¨1£©ÊÔÇó$\frac{1}{1¡Á2}+\frac{1}{2¡Á3}+\frac{1}{3¡Á4}+\frac{1}{4¡Á5}$µÄÖµ£®
£¨2£©ÊÔ¼ÆËã$\frac{1}{1¡Á2}+\frac{1}{2¡Á3}+\frac{1}{3¡Á4}+¡­+\frac{1}{{n¡Á£¨{n+1}£©}}$£¨nΪÕýÕûÊý£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Ò»ÂÖ´¬ÏÈÏò¶«º½ÐÐ8º£À½Ó×ÅÓÖÏò±±º½ÐÐ6º£ÀÔò¸Ã´¬ÕâʱÀë³ö·¢µã10º£À

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èçͼ£¬AOBÊÇÒ»ÌõÖ±Ïߣ¬¡ÏAOC=60¡ã£¬OD£¬OE·Ö±ðÊÇ¡ÏAOCºÍ¡ÏBOCµÄƽ·ÖÏߣ¬ÔòͼÖл¥²¹µÄ½ÇÓУ¨¡¡¡¡£©
A£®5¶ÔB£®6¶ÔC£®7¶ÔD£®8¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸