精英家教网 > 初中数学 > 题目详情
26、如图所示,在△ABC中,∠ABC=60°,∠BAC=75°,AD,CF分别是BC,AB边上的高,且相交于点P,∠ABC的平分线BE分别交AD,CF于M,N.
(1)试找出图中所有的等腰三角形,请写出来;
(2)图中是否有等边三角形?若有,请找出并说明理由.
(3)若MD=2cm,求DC的长.
分析:由已知条件,根据三角形内角和等于180、角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行找寻,注意做到由易到难.
解答:解:(1)△ADC,△AMB,△BNC,△MNP,△ABE
∵∠ABC=60°,∠BAC=75°,AD,CF分别是BC,AB边上的高
∴∠DAC=45°,又∵∠ACB=45°
∴△ADC为等腰三角形.
∵∠ABC的平分线BE分别交AD,CF于M,N
∴∠ABM=30°,又∵∠BAM=30°
∴△AMB为等腰三角形.
由题意可知∵∠NBC=∠NCB=30°
∴△BNC为等腰三角形.
∠PMN=∠MNP=60°
∴△MNP为等腰三角形.
∵∠ABE=30°,∠BAC=75°
∴∠BEA=75°
∴△ABE为等腰三角形.

(2)图中△MNP为等边三角形.
∵∠PMN=∠MNP=60°
∴△MNP为等边三角形.

(3)在直角三角形BDM中,
∵MD=2,∠MBD=30°
∴BM=4
在等腰三角形AMB中,BM=AM
∴AD=AM+MD=6,
在等腰直角三角形ADC中
AD=DC
∴DC=6
点评:本题考查了等腰三角形的性质和判定、角的平分线的性质及三角形内角和定理;由已知条件利用相关的性质求得各个角的度数是正确解答本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于点F,求∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.
求证:(1)四边形AFCE是平行四边形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=
115
度,若△ADE的周长为19cm,则BC=
19
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E,交AC于D,若△BCD的周长为18cm,△ABC的周长为30cm,那么BE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P点在BC上从B点向C点运动(不包括点C),点P的运动速度为2cm∕s;Q点在AC上从C点向点A运动(不包括点A),运动速度为5cm∕s,若点P、Q分别从B、C同时运动,请解答下面的问题,并写出主要过程.
(1)经过多长时间后,P、Q两点的距离为5
2
cm?
(2)经过多长时间后,△PCQ面积为15cm2

查看答案和解析>>

同步练习册答案