精英家教网 > 初中数学 > 题目详情

在△ABC中,AC2-AB2=BC2,那么


  1. A.
    ∠A=90°
  2. B.
    ∠B=90°
  3. C.
    ∠C=90°
  4. D.
    不能确定
B
分析:先把AC2-AB2=BC2转化为AC2=AB2+BC2的形式,再由勾股定理的逆定理可判断出△ABC是直角三角形,再根据大边对大角的性质即可作出判断.
解答:∵AC2-AB2=BC2
∴AC2=AB2+BC2
∴△ABC是直角三角形,
∴∠B=90°.
故选B.
点评:本题考查的是勾股定理的逆定理,即果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

1、在△ABC中,AC2-AB2=BC2,那么(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在△ABC中,D为AB边上一点,AC=BC,AC2=AB•AD.求证:△ADC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 北师大八年级版 2009-2010学年 第1期 总第157期 北师大版 题型:022

在△ABC中,AC2AB2BC2,则∠B+∠C________度.

查看答案和解析>>

科目:初中数学 来源:江西省月考题 题型:单选题

在△ABC中,AC2-AB2=BC2,那么
[     ]
A.∠A=90°
B.∠B=90°
C.∠C=90°
D.不能确定

查看答案和解析>>

同步练习册答案