精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠C=30°,AC=4,BC=,D为BC的中点,以AC为直径作⊙O.
(1)试判断点D与⊙O的位置关系,并说明理由;
(2)过点D作DE⊥AB于E,求证:DE与⊙O相切.

【答案】分析:(1)要求D与⊙O的位置关系,需先求OD的长,再与其半径相比较;若大于半径则在圆外,等于半径在圆上,小于半径则在圆内;
(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.
解答:解:(1)点D在⊙O上.
理由如下:
过O作OF⊥CD于F,连接OD.
在Rt△OCF 中,OC=AC=2,∠C=30°,
∴OF=OC=1,CF=
∵CD=BC=2,∴DF=CD-CF=
在Rt△ODF中,
∴OD=OC,∴点D在⊙O上.

(2)证明:∵D为BC中点,O为AC中点,∴OD为△ABC的中位线,
∴OD∥AB,∵DE⊥AB,∴DE⊥OD,∴⊙O与DE相切.
点评:此题主要考查了点与圆的位置关系及切线的判定.解题时要注意连接过切点的半径是圆中的常见辅助线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案