分析 如图连接OD交AC于G,连接OC,根据S四边形ADCB=S△ADC+S△ABC,得到$\frac{1}{2}$•AC•DG+$\frac{1}{2}$•AC•BC=2$\sqrt{2}$AC,求出DG=2$\sqrt{2}$-4,OD=DG+OG=4$\sqrt{2}$-2,由此即可解决问题.
解答 解:如图连接OD交AC于G,连接OC.![]()
∵$\widehat{AD}$=$\widehat{CD}$,
∴OD⊥AC,
∴AG=GC,∵OA=OB,
∴OG=$\frac{1}{2}$•BC=2,
∵S四边形ADCB=S△ADC+S△ABC,
∴$\frac{1}{2}$•AC•DG+$\frac{1}{2}$•AC•BC=2$\sqrt{2}$AC,
∴DG+4=4$\sqrt{2}$,
∴DG=2$\sqrt{2}$-4,
∴OD=DG+OG=4$\sqrt{2}$-2,
∵EC是切线,
∴OC⊥EC,
∴圆心O到直线CE的距离为4$\sqrt{2}$-2.
故答案为4$\sqrt{2}$-2.
点评 本题考查切线的性质、三角形的面积、三角形中位线定理等知识,解题的关键是学会用分割法求面积,属于中考常考题型.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 50% | B. | 40% | C. | 30% | D. | 20% |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com