【题目】小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直线称为这两个直角三角形的相似分割线.如图1、图2,直线CG、DH分别是两个不相似的Rt△ABC和Rt△DEF的相似分割线,CG、DH分别与斜边AB、EF交于点G、H,如果△BCG与△DFH相似,AC=3,AB=5,DE=4,DF=8,那么AG=_____.
![]()
【答案】3
【解析】
先由勾股定理得出BC的值,再由△BCG∽△DFH列出比例式,设AG=x,用含x的式子表示出DH;按照相似分割线可知,△AGC∽△DHE,但要先得出两个相似三角形的边或角是如何对应的,再根据相似三角形的性质列出比例式,解得x值即可.
解:∵Rt△ABC,AC=3,AB=5,
∴由勾股定理得:BC=4,
∵△BCG∽△DFH,
∴
=
,
已知DF=8,设AG=x,则BG=5﹣x,
∴
=
,
∴DH=10﹣2x,
∵△BCG∽△DFH,
∴∠B=∠FDH,∠BGC=∠CHF,
∴∠AGC=∠DHE,
∵∠A+∠B=90°,∠EDH+∠FDH=90°,
∴∠A=∠EDH,
∴△AGC∽△DHE,
∴
=
,
又DE=4,
∴
=
,
解得:x=3,
经检验,x=3是原方程的解,且符合题意.
∴AG=3.
故答案为:3.
科目:初中数学 来源: 题型:
【题目】如图,有一拱桥的桥拱是圆弧形,已知桥拱的水面跨度AB(弧所对的弦的长)为8米,拱高CD(弧的中点到弦的距离)为2米.
(1)求桥拱所在圆的半径长;
(2)如果水面AB上升到EF时,从点E测得桥顶D的仰角为α,且cotα=3,求水面上升的高度.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列等式:
,
,
,将以上三个等式两边分别相加得:
.
(1)观察发现
_________;
__________.
(2)初步应用
利用(1)的结论,解决下列问题:
①把
拆成两个分子为1的正的真分数之差,即
__________;
②把
拆成两个分子为1的正的真分数之和,即
__________.
(3)深入探究
定义“◆”是一种新的运算,若
,
,
,则
计算的结果是_________.
(4)拓展延伸
第一次用一条直径将圆周分成两个半圆(如图),在每个分点标上质数
,记2个数的和为
,第二次将两个半圆都分成
圆,在新产生的分点标相邻的已标的两个数的和的
,记4个数的和为
;第三次将四个
圆分成
圆,在新产生的分点标相邻的已标的两个数的和的
,记8个数的和为
;第四次将八个
圆分成
圆,在新产生的分点标相邻的已标的两个数的和的
,记16个数的和为
;……如此进行了
次.
①
_________(用含
、
的代数式表示);
②
,求
的值.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某单位计划购进
三种型号的礼品共
件,其中
型号礼品
件,
型号礼品比
型号礼品多
件.已知三种型号礼品的单价如下表:
型号 |
|
|
|
单价(元/件) |
|
|
|
(1)求计划购进
和
两种型号礼品分别多少件?
(2)实际购买时,厂家给予打折优惠销售(如:
折指原价
,在计划总价额不变的情况下,准备购进这批礼品.
①若只购进
两种型号礼品,且
型礼品件数不超过
型礼品的
倍,求
型礼品最多购进多少件?
②若只购进
两种型号礼品,它们的单价分别打
折、
折,
均为整数,且购进的礼品总数比计划多
件,求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电工想换房间的灯泡,已知灯泡到地面的距离为
,现有一架家用可调节式脚踏人字梯,其中踏板、地面都是水平的.梯子的侧面简化结构如图所示,左右支撑架长度相等,
.设梯子一边
与地面的夹角为
,且
可调节的范围为
.当
时,电工站在梯子安全挡中最高一档踏板
上的最大触及高度为
.
![]()
(1)当
时,求踏板
离地面的高度
.(精确到
)
(2)调节角度,试判断电工是否可以换下灯泡,并说明理由.(参考数据:
,
)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是半圆O的直径,AB=6,点C在半圆O上.过点A作AD⊥OC,垂足为点D,AD的延长线与弦BC交于点E,与半圆O交于点F(点F不与点B重合).
![]()
(1)当点F为
的中点时,求弦BC的长;
(2)设OD=x,
=y,求y与x的函数关系式;
(3)当△AOD与△CDE相似时,求线段OD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=
x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.
(1)求抛物线的解析式;
(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;
(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中BC=AC=4,D是斜边AB上的一个动点,把△ACD沿直线CD折叠,点A落在同一平面内的A′处,当A′D垂直于Rt△ABC的直角边时,AD的长为_____.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司为了到高校招聘大学生,为此设置了三项测试:笔试、面试、实习.学生的最终成绩由笔试面试、实习依次按3:2:5的比例确定.公司初选了若干名大学生参加笔试,面试,并对他们的两项成绩分别进行了整理和分析.下面给出了部分信息:
①公司将笔试成绩(百分制)分成了四组,分别为A组:60≤x<70,B组:70≤x<80,C组:80≤x<90,D组:90≤x<100;并绘制了如下的笔试成绩频数分布直方图.其中,C组的分数由低到高依次为:80,81,82,83,83,84,84,85,86,88,88,88,89.
②这些大学生的笔试、面试成绩的平均数、中位数、众数、最高分如下表:
平均数 | 中位数 | 众数 | 最高分 | |
笔试成绩 | 81 | m | 92 | 97 |
面试成绩 | 80.5 | 84 | 86 | 92 |
根据以上信息,回答下列问题:
(1)这批大学生中笔试成绩不低于88分的人数所占百分比为 .
(2)m= 分,若甲同学参加了本次招聘,他的笔试、面试成绩都是83分,那么该同学成绩排名靠前的是 成绩,理由是 .
(3)乙同学也参加了本次招聘,笔试成绩虽不是最高分,但也不错,分数在D组;面试成绩为88分,实习成绩为80分由表格中的统计数据可知乙同学的笔试成绩为 分;若该公司最终录用的最低分数线为86分,请通过计算说明,该同学最终能否被录用?
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com