精英家教网 > 初中数学 > 题目详情
材料:一般地,n个相同因数a相乘:
a•a•a•…a•a
n个
记为an.如23=8,此时,3叫做以2为底的8的对数,记为log28(即log28=3).那么,log39=
 
(log216)2+
1
3
log381
=
 
分析:根据乘方运算可得对数的答案根据有理数的加法运算可得答案.
解答:解:32=9,log39=2,
(log216)2+
1
3
log381
=42+
1
3
×4
=17
1
3

故答案为;2,17
1
3
点评:本题考查了有理数的乘法,根据乘方运算是求对数的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
一般地,n个相同的因数a相乘
a•a…a
n个
记为an,记为an.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).
(1)计算以下各对数的值:
log24=
 
,log216=
 
,log264=
 

(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;
(3)由(2)的结果,你能归纳出一个一般性的结论吗?
logaM+logaN=
 
;(a>0且a≠1,M>0,N>0)
(4)根据幂的运算法则:an•am=an+m以及对数的含义证明上述结论.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

10、阅读下列材料:
一般地,n个相同的因数a相乘a•a•…•a,记为an.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为lognb(即lognb).如34=81,则4叫做以3为底81的对数,记为log381(即log381).
请你根据上述材料,计算:log24+log39+log416+log525=
8

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读材料:
①一般地,n个相同的因数a相乘:记为an,如23=8,此时,指数3叫做以2为底8的对数,记为log28log=3(即log28=3).  
②一般地,若an=b(a>0且a≠1,b>0),则指数n叫做以a为底b的对数,记为logab(即logab=n),如34=81,则指数4叫做以3为底81的对数,记为log381(即log381=4).
(1)计算下列各对数的值:
log24=
2
2
;   log216=
4
4
;    log264=
6
6

(2)观察(1)题中的三数4、16、64之间存在的关系式是
4×16=64
4×16=64
,那么log24、log216、log264存在的关系式是
log24+log216=log264
log24+log216=log264

(3)由(2)题的结果,你能归纳出一个一般性的结论吗?
logaM+logaN=
logaMN
logaMN
  (a>0且a≠1,M>0,N>0)
(4)请你运用幂的运算法则am•an=am+n以及上述中对数的定义证明(3)中你所归纳的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请阅读材料:
①一般地,n个相同的因数a相乘:
a•a…•a
n个
记为an,如2•2•2=23=8,此时,3叫做以2为底8的对数,记为log28 (即log28=log223=3).  
②一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=logaan=n),如34=81,则4叫做以3为底81的对数,记为log381(即log381=log334=4).
(1)计算下列各对数的值:
log24=
2
2
;log216=
4
4
;log264=
6
6

(2)观察(1)题中的三数,4,16,64之间存在怎样的关系式
4×16=64
4×16=64

log24,log216,log264又存在怎样的关系式.
log24+log216=log264
log24+log216=log264

(3)由(2)题猜想 logaM+logaN=
logaMN
logaMN
(a>0且a≠1,M>0,N>0),并结合幂的运算法则:am•an=am+n加以证明.

查看答案和解析>>

同步练习册答案