【题目】如图,在平面直角坐标系xOy中,
的半径为1,A、B两点坐标分别为
、
已知点P是
上的一点,点Q是线段AB上的一点,设
的面积为S,当
为直角三角形时,S的取值范围为______.
![]()
【答案】
≤S≤
.
【解析】
根据△OPQ为直角三角形时,∠OQP不可能为90°,所以分两种情况:分别以O和P为直角顶点,根据直径所对的圆周角为直角,通过画辅助圆确定P和Q,画图,根据直角三角形面积公式计算可得结论.
![]()
解:①当P为直角顶点时,
当OQ最长时,如图1,OQ=5,Q与A重合,PQ=
=2
,S大=
×1×2
=
,
当OQ最短时,OQ=3,此时OQ⊥AB,PQ=
=2
,S小=
=
;
②当O为直角顶点时,如图2,
当Q与A重合时,OA最大,此时S=
×1×5=
>
,
当OQ⊥AB时,S最小,S=
=
,
综上,当△OPQ为直角三角形时,S的取值范围为
≤S≤
.
故答案为:
≤ S ≤
.
![]()
科目:初中数学 来源: 题型:
【题目】已知矩形PMON的边OM、ON分别在x、y轴上,O为坐标原点,且点P的坐标为(﹣2,3).将矩形PMON沿x轴正方向平移4个单位,得到矩形P1M1O1N1再将矩形P1M1O1N1绕着点O1旋转90°得到矩形P2M2O2N2.在坐标系中画出矩形P2M2O2N2,并求出直线P1P2的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).
(1)求此抛物线的函数表达式;
(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某条公共汽车线路收支差额
与乘客量
的函数关系如图所示(收支差额
车票收入
支出费用),由于目前本条线路亏损,公司有关人员提出了两条建议:建议(Ⅰ)不改变支出费用,提高车票价格;建议(Ⅱ)不改变车票价格,减少支出费用. 下面给出的四个图形中,实线和虚线分别表示目前和建议后的函数关系,则( )
![]()
④ ③ ② ①
A. ①反映了建议(Ⅰ),③反映了建议(Ⅱ) B. ②反映了建议(Ⅰ),④反映了建议(Ⅱ)
C. ①反映了建议(Ⅱ),③反映了建议(Ⅰ) D. ②反映了建议(Ⅱ),④反映了建议(Ⅰ)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线
交x轴于点
,
,交y轴于点C.
求抛物线的解析式;
如图2,D点坐标为
,连结
若点H是线段DC上的一个动点,求
的最小值.
如图3,连结AC,过点B作x轴的垂线l,在第三象限中的抛物线上取点P,过点P作直线AC的垂线交直线l于点E,过点E作x轴的平行线交AC于点F,已知
.
求点P的坐标;
在抛物线
上是否存在一点Q,使得
成立?若存在,求出Q点坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线
交x轴于点
,
,交y轴于点C.
求抛物线的解析式;
如图2,D点坐标为
,连结
若点H是线段DC上的一个动点,求
的最小值.
如图3,连结AC,过点B作x轴的垂线l,在第三象限中的抛物线上取点P,过点P作直线AC的垂线交直线l于点E,过点E作x轴的平行线交AC于点F,已知
.
求点P的坐标;
在抛物线
上是否存在一点Q,使得
成立?若存在,求出Q点坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某塔观光层的最外沿点E为蹦极项目的起跳点.已知点E离塔的中轴线AB的距离OE为10米,塔高AB为123米(AB垂直地面BC),在地面C处测得点E的仰角α=45°,从点C沿CB方向前行40米到达D点,在D处测得塔尖A的仰角β=60°,求点E离地面的高度EF.(结果精确到0.1米)
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线
与
轴交于点
,与
轴交于点
,点
是
的中点,
绕点
按顺时针旋转,且
,
的一边
交
轴于点
,开始时另一边
经过点
,点
坐标为
,当
旋转过程中,射线
与
轴的交点由点
到点
的过程中,则经过点
三点的圆的圆心所经过的路径长为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com