分析 (1)由HL证明Rt△OEB≌Rt△OFC,即可得出结论;
(2)过点O作OE⊥AB于E,OF⊥AC于F,则OE=OF,∠OEB=∠OFC=90°,由HL证明Rt△BOE≌Rt△COF,得出∠EBO=∠FCO,再由OB=OC,得出∠OBC=∠OCB,∠ABC=∠ACB,即可得出结论;
(3)不一定成立,①过点O作OE⊥AB的延长线于点E,作OF⊥AC的延长线于点F时,则OE=OF,∠OEB=∠OFC=90°,由HL证明Rt△BOE≌Rt△COF,得出∠DEO=∠FCO,
再由OB=OC,得出∠OBC=∠OCB,∠EBC=∠FCB,∠ABC=∠ACB,即可得出AB=AC成立;②过点O作OE⊥AB于点E,作OF⊥AC的延长线于点F时,连接OA,则OE=OF,由HL证明Rt△AOE≌Rt△AOF(HL),得出AD=AE,故AB=AC不成立.
解答 (1)证明:在Rt△OEB和Rt△OFC中,$\left\{\begin{array}{l}{OE=OF}\\{OB=OC}\end{array}\right.$,
∴Rt△OEB≌Rt△OFC(HL),
∴△OEB≌△OFC;![]()
(2)证明:过点O作OE⊥AB于E,OF⊥AC于F,如图1所示:
则OE=OF,∠OEB=∠OFC=90°
在Rt△BOE和Rt△COF中,
$\left\{\begin{array}{l}{OE=OF}\\{OB=OC}\end{array}\right.$,
∴Rt△BOE≌Rt△COF(HL),
∴∠EBO=∠FCO,
∵OB=OC,
∴∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴AB=AC;![]()
(3)解:不一定成立,理由如下:
分两种情况:
①过点O作OE⊥AB的延长线于点E,作OF⊥AC的延长线于点F,如图2所示:
则OE=OF,∠OEB=∠OFC=90°,
在Rt△BOE和Rt△COF中,
$\left\{\begin{array}{l}{OE=OF}\\{OB=OC}\end{array}\right.$,
∴Rt△BOE≌Rt△COF(HL),
∴∠DEO=∠FCO
∵OB=OC,
∴∠OBC=∠OCB,
∴∠EBC=∠FCB,![]()
∴∠ABC=∠ACB,
∴AB=AC;
②过点O作OE⊥AB于点E,作OF⊥AC的延长线于点F,连接OA,如图3所示:
则OE=OF,
在Rt△AOE和Rt△AOF中,
$\left\{\begin{array}{l}{OE=OF}\\{OB=OC}\end{array}\right.$,
∴Rt△AOE≌Rt△AOF(HL),
∴AD=AE,
∴AB>AC.
点评 此题考查了等腰三角形的判定与性质、直角三角形全等的判定与性质;证明三角形全等是解决问题的关键,本题有一定难度,特别是(3)中,需要进行分类讨论才能得出结论.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1万元 | B. | 1.5万元 | C. | 2.1万元 | D. | 2.4万元 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com