【题目】如图,点
、
在反比例函数
的图象上,且点
、
的横坐标分别为
,![]()
.过点
作
轴,垂足为
,且
的面积为
.
![]()
求该反比例函数的解析式;
若
,设直线
的解析式为
,当
满足什么条件,
?
求
的面积.
【答案】
;
当
时,
;
.
【解析】
(1)根据反比例函数k的几何意义得到
,即可得到k=4,于是得到反比例函数解析式为
;
(2)当a=5时,
,
,然后观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可;
(3)过点B作BD⊥x轴,垂足为D,如图,根据反比例函数图象上点的坐标特征得
,
,由于S四边形AODB=S△AOC+S梯形ACDB=S△AOB+S△BOD,根据反比例函数k的几何意义得S△AOC=S△BOD,则S梯形ACDB=S△AOB,然后根据梯形公式计算即可.
∵
轴,
∴
,
即
,
![]()
∵
,
∴
,
∴反比例函数解析式为
;
当
时,
,
,
故当
时,
;
过点
作
轴,垂足为
,如图,
,
,
∵
,
,
∴
,
∵![]()
,
∴
.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动,试解决下列问题:
(1)求直线AC的解析式;
(2)求△OAC的面积;
(3)是否存在点M、使△OMC的面积是△OAC的面积的
?若存在,求出此时点M的坐标;若不存在,请说明理由?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠ABC=45°,点D是BC边上一动点(与点B,C不重合),点E与点D关于直线AC对称,连结AE,过点B作BF⊥ED的延长线于点F.
(1)依题意补全图形;
(2)当AE=BD时,用等式表示线段DE与BF之间的数量关系,并证明.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在正方形ABCD中,点P沿边DA从点D开始向点A以1
的速度移动,同时点Q沿边AB,BC从点A开始向点C以2
的速度移动,当点P移动到点A时,P、Q同时停止移动.设点P出发
秒时,△PAQ的面积为
,
与
的函数图像如图②,则下列四个结论:①当点P移动到点A时,点Q移动到点C;②正方形边长为6cm;③当AP=AQ时,△PAQ面积达到最大值;④线段EF所在的直线对应的函数关系式为
,其中正确的有( )
![]()
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.
●特例感知
①等腰直角三角形 勾股高三角形(请填写“是”或者“不是”);
②如图1,已知△ABC为勾股高三角形,其中C为勾股顶点,CD是AB边上的高.若
,试求线段CD的长度.
![]()
●深入探究
如图2,已知△ABC为勾股高三角形,其中C为勾股顶点且CA>CB,CD是AB边上的高.试探究线段AD与CB的数量关系,并给予证明;
![]()
●推广应用
如图3,等腰△ABC为勾股高三角形,其中
,CD为AB边上的高,过点D向BC边引平行线与AC边交于点E.若
,试求线段DE的长度.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在
中,
,翻折
,使点
落在斜边
上某一点
处,折痕为
(点
、
分别在边
、
上)
当
时,若
与
相似(如图
),求
的长;
当点
是
的中点时(如图
),
与
相似吗?请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P.
(观察猜想)
①AE与BD的数量关系是 ;
②∠APD的度数为 .
(数学思考)
如图2,当点C在线段AB外时,(1)中的结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;
(拓展应用)
如图3,点E为四边形ABCD内一点,且满足∠AED=∠BEC=90°,AE=DE,BE=CE,对角线AC、BD交于点P,AC=10,则四边形ABCD的面积为 .
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠ACB=90°,AC=15,AB=25,点D为斜边AB上动点.
![]()
(1)如图1,当CD⊥AB时,求CD的长度;
(2)如图2,当AD=AC时,过点D作DE⊥AB交BC于点E,求CE的长度;
(3)如图3,在点D的运动过程中,连接CD,当△ACD为等腰三角形时,直接写出AD的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com