精英家教网 > 初中数学 > 题目详情
如图,Rt△AOB是一张放在平面直角坐标系中的直角三角形纸片,点O与原点重合,点A在x轴上,点B在y轴上,OB=
3
,∠BAO=30度.将Rt△AOB折叠,使BO边落在BA边上,点O与点D重合,折痕为BC.
(1)求直线BC的解析式;
(2)求经过B,C,A三点的抛物线y=ax2+bx+c的解析式;若抛物线的顶点为M,试判断点M是否在直线BC上,并说明理由.
(1)∵∠OBC=∠DBC=
1
2
∠OBA=
1
2
×(90°-30°)=30°
∴在Rt△COB中,OC=OB•tan30°=
3
×
3
3
=1
∴点C的坐标为(1,0)(2分)
又点B的坐标为(0,
3

∴设直线BC的解析式为y=kx+
3

∴0=k+
3

∴k=-
3

则直线BC的解析式为:y=-
3
x+
3
;(4分)

(2)∵在Rt△AOB中,OA=
OB
tan30°
=
3
÷
3
3
=3
∴A(3,0),
又∵B(0,
3
),C(1,0)
0=9a+3b+c
3
=c
0=a+b+c
(7分)
解之得:a=
3
3
,b=-
4
3
3
,c=
3

∴所求抛物线的解析式为y=
3
3
x2-
4
3
3
x+
3
(8分)
配方得:y=
3
3
(x-2)2-
3
3

∴顶点为M(2,-
3
3
)
(9分)
把x=2代入y=-
3
x+
3
,得:y=-
3
≠-
3
3

∴顶点M不在直线BC上.(10分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知,抛物线y=ax2-2ax与x轴交于A、B两点(点A在点B的右侧),且抛物线与直线y=-2ax-1的交点恰为抛物线的顶点C.
(1)求a的值;
(2)如果直线y=-x+b(
2
≤b≤
3
)与x轴交于点D,与线段BC交于点E,求△CDE面积的最大值;
(3)在(2)的结论下,在x轴下方,是否存在点F,使△BDF与△BCD相似?如果存在,请求出点F的坐标;不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①是抛物线形拱桥,当水面在n时,拱顶离水面2米,水面宽4米.
(1)求出拱桥的抛物线解析式;
(2)若水面下降2.5米,则水面宽度将增加多少米?(图②是备用图)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=-x2+bx+c与x轴的两个交点分别为Α(1,0),B(3,0),
(1)求此抛物线的解析式;
(2)设此抛物线的顶点为D,与y轴的交点为C,试求四边形ΑBCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小王利用计算机设计了一个计算程序,输入和输出的数据如下表:
输入12345
输出25101726
若输入的数据是x时,输出的数据是y,y是x的二次函数,则y与x的函数表达式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

对于三个数a,b,c,用max{a,b,c}表示这三个数中最大的数.例如:max{1,2,3}=3.则:
(1)max{sin30°,(
2
-1)0
,tan30°}=______;
(2)如果max{5,3x+2,3-2x}=5,则x的取值范围是______;
(3)max{x2+2,-x+4,x}的最小值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,B是长度为1的线段AE上任意一点,在AE的同一侧分别作正方形ABCD和长方形BEFG,且EF=2BE.

(1)点B在何处时,正方形ABCD的面积与长方形BEFG的面积和最小,最小值为多少?
(2)若点C与点G重合,M为AB中点,N为EF中点,MN与BC交于点H(如图2所示),将△OMA沿直线DM,△MNE沿直线MN分别向矩形AEFD内折叠,求四边形DMNF未被两个折叠三角形覆盖的图形面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=-x2+px+q的顶点M在第一象限,与x轴和y轴的正半轴分别交于点A、B,其中A的坐标为(2,0),且四边形AOMB的面积为
11
4
,求p、q的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线y=-
3
4
x与BC边相交于D点.
(1)求点D的坐标;
(2)若抛物线y=ax2-
9
4
x经过点A,试确定此抛物线的表达式;
(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求符合条件的点P的坐标.

查看答案和解析>>

同步练习册答案