精英家教网 > 初中数学 > 题目详情

【题目】阅读材料:

我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说表示在数轴上数与数对应的点之间的距离,这个结论可以推广为表示数轴上对应点之间的距离.

1:已知,求的值.

解:容易看出,在数轴上与原点距离为的点的对应数为,即的值为

2:已知,求的值.

解:在数轴上与的距离为的点的对应数为,即的值为

仿照阅读材料的解法,求下列各式中的值.

1

2

3)由以上探索猜想:对于任何有理数是否有最小值?如果有,写出最小值;如果没有,请说明理由.

【答案】1-33;(2-62;(3)有最小值,最小值为3

【解析】

1)由阅读材料中的方法求出的值即可;
2)由阅读材料中的方法求出的值即可;
3)根据题意得出原式最小时的范围,并求出最小值即可.

1,在数轴上与原点距离为3的点的对应数为-33,即的值为-33
2,在数轴上与-2距离为4的点的对应数为-62,即的值为-62

3)有最小值,最小值为3
理由是:

理解为:在数轴上表示36的距离之和,
∴当36之间的线段上(即)时:
的值有最小值,最小值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】观察下面三行单项式:

;①

;②

;③

根据你发现的规律,解答下列问题:

1)第①行的第8个单项式为

2)第②行的第9个单项式为

3)第③行的第n个单项式为 (用含n的式子表示)

4)取每行的第8个单项式,令这三个单项式的和为A.

时,求A的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】儿童节期间某公园游戏场举行一场活动.有一种游戏的规则是:在一个装有8个红球和若干白球(每个球除颜色外其他都相同)的袋中随机摸一个球摸到一个红球就得到一个海宝玩具.已知参加这种游戏的儿童有40 000公园游戏场发放海宝玩具8 000个.

(1)求参加此次活动得到海宝玩具的频率

(2)请你估计袋中白球的数量接近多少个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,A(﹣2,0),B(0,4),以B点为直角顶点在第二象限作等腰直角△ABC

(1)求C点的坐标;

(2)在坐标平面内是否存在一点P,使△PAB与△ABC全等?若存在,求出P点坐标,若不存在,请说明理由;

(3)如图2,点Ey轴正半轴上一动点,以E为直角顶点作等腰直角△AEM,过MMNx轴于N,求OEMN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法﹣﹣更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.

例如:求91与56的最大公约数

解:

请用以上方法解决下列问题:

(1)求108与45的最大公约数;

(2)求三个数78、104、143的最大公约数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,点O是边AC上一个动点,过O作直线MNBC.设MN交ACB的平分线于点E,交ACB的外角平分线于点F.

(1)求证:OE=OF;

(2)若CE=12,CF=5,求OC的长;

(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,公共汽车行驶在笔直的公路上,这条路上有四个站点,每相邻两站之间的距离为千米,从站开往站的车称为上行车,从站开往站的车称为下行车.第一班上行车、下行车分别从站、站同时发车,相向而行,且以后上行车、下行车每隔分钟分别在站同时发一班车,乘客只能到站点上、下车(上、下车的时间忽略不计),上行车、 下行车的速度均为千米/小时.

第一班上行车到站、第一班下行车到站分别用时多少?

第一班上行车与第一班下行车发车后多少小时相距千米?

一乘客在两站之间的处,刚好遇到上行车,千米,他从处以千米/小时的速度步行到站乘下行车前往站办事.

①若千米,乘客从处到达站的时间最少要几分钟?

②若千米,乘客从处到达站的时间最少要几分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,线段ABCD相交于点O,连结ADCB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线APCP相交于点P,并且与CDAB分别相交于点MN.试解答下列问题:

(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系;

(2)仔细观察,在图2中“8字形”有多少个;

(3)图2中,当∠D50°,∠B40°时,求∠P的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“十房”天然气正在紧张施工中,从201811日起居民生活用气阶梯价格制度将正式实施,一般生活用气收费标准如下表所示,比如6口以下的户年天然气用量在第二档时,其中350立方米按2.28/m3收费,超过350立方米的部分按2.5/m3收费.小冬一家有五口人,他想帮父母计算一下实行阶梯价后,家里天然气费的支出情况.

1)如果他家2018年全年使用300立方米天然气,那么需要交多少元天然气费?

2)如果他家2018年全年使用500立方米天然气,那么需要交多少元天然气费?

3)如果他家2018年需要交1563元天然气费,他家2018年用了多少立方米天然气?

查看答案和解析>>

同步练习册答案