精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0),与y轴交于点C(0,3).
(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,点P的横坐标为m,试用含m的代数式表示点P的纵坐标;
(3)过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;
(4)若点F是第一象限抛物线上的一个动点,过点F作FQ∥AC交x轴于点Q.当点F的坐标为
(2,3)
(2,3)
时,四边形FQAC是平行四边形;当点F的坐标为
11
4
15
16
11
4
15
16
时,四边形FQAC是等腰梯形(直接写出结果,不写求解过程).
分析:(1)利用待定系数法求出抛物线的解析式,然后化为顶点式求出D点坐标;
(2)利用待定系数法求出直线的解析式,然后将点P的横坐标m代入,即可用含m的代数式表示点P的纵坐标;
(3)本问关键是求出四边形PMAC面积的表达式,这个表达式是关于P点横坐标的二次函数,再利用二次函数求极值的方法求出面积的最大值,并求出P点坐标;
(4)四边形PQAC为平行四边形或等腰梯形时,需要结合几何图形的性质求出P点坐标:
①当四边形PQAC为平行四边形时,如答图1所示.构造全等三角形求出P点的纵坐标,再利用P点与C点关于对称轴x=1对称的特点,求出P点的横坐标;
②当四边形PQAC为平行四边形时,如答图2所示.利用等腰梯形、平行四边形、全等三角形以及线段之间的三角函数关系,求出P点坐标.注意三角函数关系部分,也可以用相似三角形解决.
解答:解:(1)∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0),
∴可设抛物线的解析式为:y=a(x+1)(x-3)
又∵抛物线 与y轴交于点C(0,3),
∴3=a(0+1)(0-3)
∴a=-1
∴y=-(x+1)(x-3)
即抛物线的解析式为:y=-x2+2x+3
∴y=-(x-1)2+4
∴抛物线顶点D的坐标为(1,4);

(2)设直线BD的解析式为:y=kx+b
由B(3,0),D(1,4)得
3k+b=0
k+b=4

解得
k=-2
b=6

∴直线BD的解析式为y=-2x+6,
∵点P在直线PD上,点P的横坐标为m
∴点P的纵坐标为:-2m+6;

(3)由(1),(2)知:
OA=1,OC=3,OM=m,PM=-2m+6,
∴S四边形PMAC=S△OAC+S梯形OMPC
=
1
2
×1×3+
1
2
×(3-2m+6)×m

=-m2+
9
2
m+
3
2

=-(m-
9
4
)2+
105
16

1<
9
4
<3

∴当m=
9
4
时,四边形PMAC的面积取得最大值为
105
16

此时点P的坐标为(
9
4
3
2
);
                 
(4)①四边形PQAC是平行四边形,如右图①所示.
过点P作PE⊥x轴于点E,易证△AOC≌△QEP,
∴yP=PE=CO=3.
又∵CP∥x轴,
则点C(0,3)与点P关于对称轴x=1对称,
∴xP=2.
∴P(2,3).
②四边形PQAC是等腰梯形,如右图②所示.
设P(m,n),P点在抛物线上,则有n=-m2+2m+3.
过P点作PE⊥x轴于点E,则PE=n.
在Rt△OAC中,OA=1,OC=3,
∴AC=
10
,tan∠CAO=3,cos∠CAO=
10
10

∵PQ∥CA,
∴tan∠PQE=
PE
QE
=tan∠CAO=3,
∴QE=
1
3
n,PQ=
QE2+PE2
=
10
3
n.
过点Q作QM∥PC,交AC于点M,则四边形PCMQ为平行四边形,△QAM为等腰三角形.再过点Q作QN⊥AC于点N.
则有:CM=PQ=
10
3
n,AN=
1
2
AM=
1
2
(AC-CM)=
10
2
(1-
1
3
n),
AQ=
AN
cos∠CAO
=
10
2
(1-
1
3
n)
10
10
=5(1-
1
3
n).
又∵AQ=AO+OQ=1+(m-
1
3
n),
∴5(1-
1
3
n)=1+(m-
1
3
n),化简得:n=3-
3
4
m;
又∵P点在抛物线上,有n=-m2+2m+3,
∴-m2+2m+3=3-
3
4
m,化简得:m2-
11
4
m=0,
解得m1=0(舍去),m2=
11
4

∴m=
11
4
,n=3-
3
4
m=
15
16

∴P(
11
4
15
16
).
故答案为:(2,3);(
11
4
15
16
).
点评:本题综合考查了诸多重要的知识点,包括:二次函数的图象与性质、待定系数法、二次函数的极值、图形面积的求法、等腰梯形、平行四边形、等腰三角形、三角函数(或相似三角形)等,涉及考点众多,有一定的难度.本题难点在于第(4)问等腰梯形的情形,注意该种情形下求点的坐标的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案