精英家教网 > 初中数学 > 题目详情
已知:把矩形AOBC放入直角坐标系xOy中,使OB、OA分别落在x轴、y轴上,点A的坐标为(0,2
3
),连接AB,∠OAB=60°,将△ABC沿AB翻折,使C点落在该坐标平面内的D点处,AD交x轴于点E.
(1)求D点坐标;
(2)求经过点A、D的直线的解析式.
根据题意,可分以下两种情况:
第一种情况矩形在第一象限,如图.
(1)OA=2
3
,∠AOB=90°,∠OAB=60°,
∴OB=OA•tan60°=2
3
3
=6.
又Rt△ACB≌Rt△ADB,
∴AC=AD=OB=6.
过点D作y轴的垂线,垂足为F,
∠OAB=60°,
∴∠BAC=∠BAD=∠DAF=30°.
∴DF=
1
2
AD=3.
AF=AD•cos30°=6×
3
2
=3
3

∴OF=AF-OA=3
3
-2
3
=
3

∴点D的坐标为(3,-
3
).
(2分)
(2)设经过点A(0,2
3
)、D(3,-
3
)的直线的解析式为y=kx+b,
b=2
3
3k+b=-
3

解得
b=2
3
k=-
3

∴经过点A、D的直线的解析式为y=-
3
x+2
3
. (4分)
第二种情况矩形在第二象限,(图略)
(1)由第一种情况,根据对称性得,点D的坐标为(-3,-
3
).(5分)
(2)设经过点A(0,2
3
)、D(3,-
3
)的直线的解析式为y=kx+b,
b=2
3
-3k+b=-
3

解得
k=
3
b=2
3

∴经过点A、D的直线的解析式为y=
3
x+2
3
. (7分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

2006年的夏天,某地旱情严重.该地10号,15号的人日均用水量的变化情况如图所示.若该地10号,15号的人均用水量分别为18千克和15千克,并一直按此趋势直线下降.当人日均用水量低于10千克时,政府将向当地居民送水.那么政府应开始送水的号数为(  )
A.23B.24C.25D.26

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

受国际金融危机影响,市自来水公司号召全市市民节约用水.决定采取月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图所示.若该用户本月用水21吨,则应交水费(  )
A.52.5元B.45元C.42元D.37.8元

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.
(1)求直线AB的解析式;
(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?
(3)当t=2秒时,四边形OPQB的面积为多少个平方单位?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知变量y与x的函数图象如图所示,则函数关系式为(  )
A.y=-3x-3(0≤x≤2)B.y=-3x+3
C.y=
3
2
x-3(0≤x≤2)
D.y=3x+3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,⊙O的直径为10,弦AC=8,点B在圆周上运动(与A、C两点不重合),连接BC、BA,过点C作CD⊥AB于D、设CB的长为x,CD的长为y.
(1)求y关于x的函数关系式;当以BC为直径的圆与AC相切时,求y的值;
(2)在点B运动的过程中,以CD为直径的圆与⊙O有几种位置关系,并求出不同位置时y的取值范围;
(3)在点B运动的过程中,如果过B作BE⊥AC于E,那么以BE为直径的圆与⊙O能内切吗?若不能,说明理由;若能,求出BE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场计划投入一笔资金采购一批紧俏商品,经市场调研发现,如果本月初出售,可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售可获利25%,但要支付仓储费8000元.设商场投入资金x元,请你根据商场的资金情况,向商场提出合理化建议,说明何时出售获利较多.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

甲、乙两个工程队同时挖掘两段长度相等的隧道,如图是甲、乙两队挖掘隧道长度y(米)与挖掘时间x(时)之间关系的部分图象.请解答下列问题:
(1)在前2小时的挖掘中,甲队的挖掘速度为______米/小时,乙队的挖掘速度为______米/小时;
(2)①当2≤x≤6时,求出y与x之间的函数关系式;
②开挖几小时后,甲队所挖掘隧道的长度开始超过乙队?
(3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/小时,结果两队同时完成了任务.问甲队从开挖到完工所挖隧道的总长度为多少米?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知点A(-1,0)和点B(1,2),在y轴上确定点P,使得△ABP为直角三角形,则满足条件的点P共有(  )
A.5个B.4个C.3个D.2个

查看答案和解析>>

同步练习册答案