精英家教网 > 初中数学 > 题目详情

已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴交于点B(1,0),C(5,0).
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)设M为OA中点,x轴上有一点E,在抛物线对称轴上有一点F.若S=ME+EF+FA,则求当S最小时,E、F两点的坐标,及此时S的值.

解:(1)根据题意,设抛物线的解析式为:y=a(x-5)(x-1),
则有:3=a(0-5)(0-1),
a=
∴抛物线的解析式为:y=(x-5)(x-1)=x2-x+3.

(2)依题意可得OA的三等分点分别为(0,1),(0,2);
设直线CD的解析式为y=kx+b;
当点D的坐标为(0,1)时,直线CD的解析式为y=-x+1;
当点D的坐标为(0,2)时,直线CD的解析式为y=-x+2.

(3)如图,由题意,可得M(0,);
点M关于x轴的对称点为M′(0,-),
点A关于抛物线对称轴x=3的对称点为A′(6,3);
连接A′M′;
根据轴对称性及两点间线段最短可知,A′M′的长就是所求的S最小值;
所以A′M′与x轴的交点为所求E点,与直线x=3的交点为所求F点;
可求得直线A′M′的解析式为y=x-
可得E点坐标为(2,0),F点坐标为(3,);
由勾股定理可求出A′M′=
所以此时S的值最小,且S=ME+EF+FA=
分析:(1)将A、B、C三点坐标代入抛物线的解析式中,通过联立方程组求出待定系数的值,从而确定该抛物线的解析式.
(2)已知A(0,3),那么OA的三等分点应该是(0,1)或(0,2),而C点坐标已知,分两种情况,利用待定系数法求解即可.
(3)若ME+EF+FA的值最小,可取A关于抛物线对称轴的对称点A′,M关于x轴的对称点M′,若连接A′M′,那么与x轴、抛物线对称轴的交点必为所求的E、F点,可先求出直线A′M′的解析式,进而可求出E、F的坐标,而A′、M′的坐标已求得,即可得到A′M′,即此时S的最小值.
点评:此题主要考查了函数解析式的确定、轴对称的性质、两点间线段最短等知识点的综合应用,(3)题中,根据轴对称和两点间线段最短等相关知识确定出E、F点的位置,是解决问题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案