精英家教网 > 初中数学 > 题目详情
已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒。
(1)当k=-1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1)。
①直接写出t=1秒时C、Q两点的坐标;
②若以Q、C、A为顶点的三角形与△AOB相似,求t的值;
(2)当k=-时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2)。
①求CD的长;
②设△COD的OC边上的高为h,当t为何值时,h的值最大?
解:(1)①C(1,2),Q(2,0);
②由题意得:P(t,0),C(t,-t+3),Q(3-t,0),
分两种情况讨论:
情形一:当△AQC∽△AOB时,∠AQC=∠AOB=90°,
∴CQ⊥OA,
∵CP⊥OA,
∴点P与点Q重合,OQ=OP,
即3-t=t,
∴t=1.5;
情形二:当△AQC∽△AOB时,∠ACQ=∠AOB=90°,
∵OA=OB=3,
∴△AOB是等腰直角三角形,
∴△ACQ也是等腰直角三角形,
∵CP⊥OA,
∴AQ=2CP,
即t=2(-t+3),
∴t=2,
∴满足条件的t的值是1.5秒或2秒;
(2)①由题意得:C(t,-
∴以C为顶点的抛物线解析式是y=

解得
过点D作DE⊥CP于点E,
则∠DEC=∠AOB=90°,
∵DE∥OA,
∴∠EDC=∠OAB,
∴△DEC∽△AOB

∵AO=4,AB=5,DE=
∴CD=
②∵
CD边上的高=

∴S△COD为定值,
要使OC边上的高h的值最大,只要OC最短,
因为当OC⊥AB时OC最短,
此时OC的长为,∠BCO=90°
∵∠AOB=90°
∴∠COP=90°-∠BOC=∠OBA
又∵CP⊥OA
∴Rt△PCO∽Rt△OAB
,OP=
即t=
∴当t为秒时,h的值最大。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

12、已知直线y=kx+b经过第一、二、四象限,则直线y=bx+k经过(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•义乌市)如图1,已知直线y=kx与抛物线y=-
4
27
x2
+
22
3
交于点A(3,6).
(1)求直线y=kx的解析式和线段OA的长度;
(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N.试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;
(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=kx+1经过点A(2,5),求不等式kx+1>0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=kx+b(k≠0)与直线y=-2x平行,且经过点(1,1),则直线y=kx+b(k≠0)可以看作由直线y=-2x向
平移
3
3
个单位长度而得到.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线y=kx+2-4k(k为实数),不论k为何值,直线都经过定点
(4,2)
(4,2)

查看答案和解析>>

同步练习册答案