精英家教网 > 初中数学 > 题目详情
精英家教网如图,在矩形ABCD中,AB=4,BC=3,点E是边CD上任意一点(点E与点C、D不重合),过点A作AF⊥AE,交边CB的延长线于点F,连接EF,交边AB于点G.设DE=x,BF=y.
(1)求y关于x的函数解析式,并写出自变量x的取值范围;
(2)如果AD=BF,求证:△AEF∽△DEA;
(3)当点E在边CD上移动时,△AEG能否成为等腰三角形?如果能,请直接写出线段DE的长;如果不能,请说明理由.
分析:(1)由矩形的性质推出∠BAD=∠D=∠ABC=90°,即得∠D=∠ABF,再由AF⊥AE得出∠EAF=∠BAD=90°,然后由∠EAF=∠BAF+∠BAE,∠BAD=∠DAE+∠BAE,得出∠DAE=∠BAF,由∠D=∠ABF,∠DAE=∠BAF,得△DAE∽△BAF,再由三角形相似的性质得到y关于x的函数解析式y=
4
3
x
,从而得出x的取值范围.
(2)由AB∥CD,得出
FG
GE
=
FB
BC
=1.即得FG=EG,再由∠EAF=90°,得AG=FG,∠FAG=∠AFG,∴∠AFE=∠DAE,再由∠EAF=∠D,∠AFE=∠DAE,得△AEF∽△DEA.
(3)当点E在边CD上移动时,△AEG能成为等腰三角形,此时可以推断出三种情况,一一推断即可.
解答:解:(1)在矩形ABCD中,∠BAD=∠D=∠ABC=90°,AD=BC=3.
即得∠D=∠ABF.
∵AF⊥AE,∴∠EAF=∠BAD=90°.
又∵∠EAF=∠BAF+∠BAE,∠BAD=∠DAE+∠BAE,
∴∠DAE=∠BAF.
于是,由∠D=∠ABF,∠DAE=∠BAF,
得△DAE∽△BAF.(1分)
AD
AB
=
DE
BF

由DE=x,BF=y,得
3
4
=
x
y
,即得y=
4
3
x.(2分)
∴y关于x的函数解析式是y=
4
3
x,0<x<4.(3分)

(2)∵AD=BF,AD=BC,∴BF=BC.
在矩形ABCD中,AB∥CD,∴
FG
GE
=
FB
BC
=1.即得FG=EG.
于是,由∠EAF=90°,得AG=FG.∴∠FAG=∠AFG.
∴∠AFE=∠DAE.(4分)
于是,由∠EAF=∠D,∠AFE=∠DAE,得△AEF∽△DEA.(5分)

(3)当点E在边CD上移动时,△AEG能成为等腰三角形.
此时,①当AG=EG时,DE=
9
4
;(6分)
②当AE=GE时,DE=
3
2
;(7分)
③当AG=AE时,DE=
7
8
(8分)
点评:本题主要考查了矩形的性质,以及相似三角形的判定和性质和一次函数的综合运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,AB=4cm,BC=8cm,点P从点A出发以1cm/s的速度向点B运动,点Q从点B出发以2cm/s的速度向点C运动,设经过的时间为xs,△PBQ的面积为ycm2,则下列图象能反映y与x之间的函数关系的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE精英家教网
(1)判断直线CE与⊙O的位置关系,并说明理由;
(2)若AB=
2
,BC=2,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在矩形 ABCD中,AB=30cm,BC=60cm.点P从点A出发,沿A→B→C→D路线向点D匀速运动,到达点D后停止;点Q从点D出发,沿 D→C→B→A路线向点A匀速运动,到达点A后停止.若点P、Q同时出发,在运动过程中,Q点停留了1s,图②是P、Q两点在折线AB-BC-CD上相距的路程S(cm)与时间t(s)之间的函数关系图象.
(1)请解释图中点H的实际意义?
(2)求P、Q两点的运动速度;
(3)将图②补充完整;
(4)当时间t为何值时,△PCQ为等腰三角形?请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AB=6,则AD=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=4,BC=6,E为线段BC上的动点(不与B、C重合).连接DE,作EF⊥DE,EF与AB交于点F,设CE=x,BF=y.
(1)求y与x的函数关系式;
(2)x为何值时,y的值最大,最大值是多少?
(3)若设线段AB的长为m,上述其它条件不变,m为何值时,函数y的最大值等于3?

查看答案和解析>>

同步练习册答案