精英家教网 > 初中数学 > 题目详情
7.如图,Rt△ABC中,∠C=90°,∠A=30°,BC=6,点M在AB上,且AM=4,点D是AC边上的一个动点(不与A、C重合),设CD的长为x,△ADM的面积y
(1)写出y关于x的函数关系式;
(2)写出函数的定义域.

分析 (1)根据三角函数表示出AC,根据线段的和差关系得到AD,再根据三角函数表示出DE,根据三角形面积公式可求y关于x的函数关系式;
(2)根据点D是AC边上的一个动点(不与A、C重合),以及AC的长可求函数的定义域.

解答 解:(1)∵Rt△ABC中,∠C=90°,∠A=30°,BC=6,
∴AC=$\sqrt{3}$BC=6$\sqrt{3}$,
∴,
∵Rt△AED中,∠AED=90°,∠A=30°,AD=6$\sqrt{3}$-x,
∴DE=$\frac{1}{2}$AD=3$\sqrt{3}$-$\frac{1}{2}$x,
∴y关于x的函数关系式为y=$\frac{1}{2}$×4×(3$\sqrt{3}$-$\frac{1}{2}$x)=6$\sqrt{3}$-x;
(2)函数的定义域为0<x<6$\sqrt{3}$.

点评 本题考查二次函数的应用、三角形面积公式等知识,解题的关键是记住三角形的面积公式,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.不论m取任何实数,抛物线y=(x-m)2+m-1(x为自变量)的顶点都在一条直线上,则这条直线的函数解析式是y=x-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.化简:
(1)(2x+y)(x-y)-(x2y-2xy2-y3)÷y;
(2)$\frac{{{a^2}-{b^2}}}{a}$÷($\frac{{2ab-{b^2}}}{a}$-a)+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,边长都是1的正方形和正三角形,其一边在同一水平线上,三角形沿该水平线左向右匀速穿过正方形.设穿过的时间为t,正方形与三角形重合部分的面积为S(空白部分),求出s与t之间的函数关系式,写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在△ABC中,AB=AC=5,BC=8,点P、Q分别在射线CB、AC上(点P不与点C、点B重合),且保持∠APQ=∠ABC.
①若点P在线段CB上(如图),且BP=6,求线段CQ的长;
②若BP=x,CQ=y,求y与x之间的函数关系式,并写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.把四块长为a,宽为b的长方形木板围成如图所示的正方形,请解答下列问题:
(1)按要求用含、的两种方式表示空心部分的正方形的面积S(结果不要化简保留原式):
①用大正方形面积减去四块木板的面积表示:S=(a+b)2-4ab;
②直接用空心部分的正方形边长的平方表示:S=(a-b)2
(2)由①、②可得等式(a+b)2-4ab=(a-b)2
(3)试证明(2)中的等式成立.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好分割为两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a,宽为b,且a>b.当AB长度不变而BC变长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD内,S1与S2的差总保持不变,求a,b满足的关系式.
(1)为解决上述问题,如图3,小明设EF=x,则可以表示出S1=a(x+a),S2=4b(x+2b);
(2)求a,b满足的关系式,写出推导过程.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.使一次函数y=(m+2)x+m-2不经过第二象限,且使关于x的不等式组$\left\{\begin{array}{l}{x>m-2}\\{-3x+2≥6m-1}\end{array}\right.$有解的所有整数m的和为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.
(1)求证:△AEF∽△ABC;
(2)求这个正方形零件的边长;

查看答案和解析>>

同步练习册答案