【题目】如图,在等边
中,
厘米,
厘米,如果点
以
厘米
的速度运动.
![]()
(1)如果点
在线段
上由点
向点
运动.点
在线段
上由
点向
点运动,它们同时出发,若点
的运动速度与点
的运动速度相等:
①经过“
秒后,
和
是否全等?请说明理由.
②当两点的运动时间为多少秒时,
刚好是一个直角三角形?
(2)若点
的运动速度与点
的运动速度不相等,点
从点
出发,点
以原来的运动速度从点
同时出发,都顺时针沿
三边运动,经过
秒时点
与点
第一次相遇,则点
的运动速度是__________厘米
秒.(直接写出答案)
【答案】(1)①
,理由详见解析;②当
秒或
秒时,
是直角三角形;(2)
或
.
【解析】
(1)①根据题意得CM=BN=6cm,所以BM=4cm=CD.根据“SAS”证明△BMN≌△CDM;
②设运动时间为t秒,分别表示CM和BN.分两种情况,运用特殊三角形的性质求解:I.∠NMB=90°;Ⅱ.∠BNM=90°;
(2)点M与点N第一次相遇,有两种可能:①.点M运动速度快;②.点N运动速度快,分别列方程求解.
解:(1)①
.
理由如下:
厘米
秒,且
秒,
![]()
![]()
![]()
![]()
![]()
![]()
,
.![]()
②设运动时间为
秒,
是直角三角形有两种情况:
Ⅰ.当
时,
,
,
,
![]()
(秒);
Ⅱ.当
时,
,
.
,
![]()
(秒)
当
秒或
秒时,
是直角三角形;
(2)分两种情况讨论:
①.若点
运动速度快,则
,解得
;
②.若点
运动速度快,则
,解得
.
故答案是
或
.
科目:初中数学 来源: 题型:
【题目】如图,在
ABC中,AB=5,AC=12,BC=13,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】国庆放假时,小明一家三口准备驾驶小轿车去乡下探望爷爷、奶奶和外公、外婆.早上从家里出发,先向东走了6千米到超市买东西,然后再向东走了1.5千米到爷爷家,中午从爷爷家出发向西走了12千米到外公家,晚上返回家里.
(1)若以家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家和外公家的位置在下面数轴上分别用点A、B、C表示出来;
(2)若小轿车每千米耗油0.08升,求小明一家从出发到返回家所经历路程小车的耗油量.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】嘉淇同学用配方法推导一元二次方程ax2+bx+c=0(a≠0)的求根公式时,对于b2﹣4ac>0的情况,她是这样做的:
由于a≠0,方程ax2+bx+c=0变形为:
x2+
x=﹣
,…第一步
x2+
x+(
)2=﹣
+(
)2,…第二步
(x+
)2=
,…第三步
x+
=
(b2﹣4ac>0),…第四步
x=
,…第五步
嘉淇的解法从第 步开始出现错误;事实上,当b2﹣4ac>0时,方程ax2+bx+c=0(a≠O)的求根公式是 .
用配方法解方程:x2﹣2x﹣24=0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为__m.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在数轴上A点表示数
,B点表示数
,
、
满足|
|+|
|=0;
![]()
(1)点A表示的数为_____;点B表示的数为_____;
(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),
①当t=1时,甲小球到原点的距离=_____;乙小球到原点的距离=_____.
当t=3时,甲小球到原点的距离=_____;乙小球到原点的距离=_____.
②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A(﹣2,﹣2)、B(5,﹣3)、C(1,1)都是格点.
(1)∠ACB的大小为 ;
(2)要求在下图中仅用无刻度的直尺作图:以A为中心,取旋转角等于∠BAC.把△ABC逆时针旋转,得到△AB1C1,其中点C和点B的对应点分别为点C1和点B1,操作步骤如下:
第一步:延长AC到格点B1,使得AB1=AB;
第二步:延长BC到格点E,使得CE=CB,连接AE;
第三步:取格点F,连接FB1交AE于点C1,则△AB1C1即为所求.
请你按步骤完成作图,并直接写出B1、E、F三点的坐标.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,E是AD的中点,延长CE,BA交于点F,连接AC,DF.
(1)求证:四边形ACDF是平行四边形;
(2)当CF平分∠BCD时,写出BC与CD的数量关系,并说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…在直线l上,直线l与x轴的夹角为45°和点C1,C2,C3,…在x轴上,已知点A1 (0,1),则A2018的坐标是( ).
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com