分析 (1)根据自变量与函数值得对应关系,可得A,G点坐标,根据三角形的面积,可得函数关系式,再根据面积间的关系,可得关于b的方程,根据解方程,可得答案;
(2)根据自变量与函数值得对应关系,可得A,G点坐标,根据三角形的面积,可得函数关系式.
解答 解:(1)如图
,
CD=6-3=3,CF=$\sqrt{3}$.
S矩形CDEF=CD•CF=6$\sqrt{3}$.
y=-$\frac{\sqrt{3}}{3}$x+b,当y=0时,-$\frac{\sqrt{3}}{3}$x+b=0,解得x=$\sqrt{3}$b,
即A点坐标为($\sqrt{3}$b,0).
AC=$\sqrt{3}$b-3.
当x=3时,y=-$\frac{\sqrt{3}}{3}$×3+b=b-$\sqrt{3}$,
即G点坐标(3,b-$\sqrt{3}$).
CG=b-$\sqrt{3}$,
矩形CDEF与△ABO重叠部分的面积为S,
S=$\frac{1}{2}$CG•AC=$\frac{1}{2}$(b-$\sqrt{3}$)($\sqrt{3}$b-3),
当S等于矩形CDEF面积的一半时,
即$\frac{1}{2}$(b-$\sqrt{3}$)($\sqrt{3}$b-3)=$\frac{1}{2}$×3$\sqrt{3}$.
解得b=2$\sqrt{3}$,b=0(不符合题意,舍);
(2)由(1)知,
S=$\frac{1}{2}$CG•AC=$\frac{1}{2}$(b-$\sqrt{3}$)($\sqrt{3}$b-3),
化简,得
S=$\frac{\sqrt{3}}{2}{b}^{2}$-3b+$\frac{3\sqrt{3}}{2}$.
点评 本题考查了二次函数的应用,利用三角形的面积得出函数关系式是解题关键.
科目:初中数学 来源: 题型:选择题
| A. | 2017 | B. | 2016 | C. | 2017! | D. | 2016! |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 不可能10次正面朝上 | B. | 必有5次正面朝上 | ||
| C. | 可能有8次正面朝上 | D. | 掷2次必有1次正面朝上 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com