精英家教网 > 初中数学 > 题目详情
如图,圆柱的高为12cm,底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离是多少cm?(π取3).
分析:先把圆柱的侧面展开得其侧面展开图,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理求得AB的长.
解答:解:如图,将圆柱的侧面沿过A点的一条母线剪开,得到长方形ADFE,
连接AB,则线段AB的长就是蚂蚁爬行的最短距离,其中C,B分别是AE,DF的中点.
∵AD=12cm,DB=πr=3π=9cm(π取3),
∴AB=
AD2+DB2
=
122+92
=15cm.
故蚂蚁经过的最短距离为15cm.
点评:本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2007•西城区二模)如图,地上有一圆柱,在圆柱下底面的A点处有一蚂蚁,它想沿圆柱表面爬行.吃到上底面上与A点相对的B点处的食物(π的近似值取3,以下同).
(1)当圆柱的高h=12厘米,底面半径r=3厘米时,蚂蚁沿侧面爬行时最短路程是多少;
(2)当圆柱的高h=3厘米,底面半径r=3厘米时,蚂蚁沿侧面爬行也可沿AC到上底面爬行时最短路程是多少;
(3)探究:当圆柱的高为h,圆柱底面半径为r时,蚂蚁怎样爬行的路程最短,路程最短为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,有一个圆柱,它的高为12厘米,底面半径为3厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面B点处的食物,则需要爬行的最短路程是
15
15
厘米.(π的值取3)

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 北师大八年级版 2009-2010学年 第1期 总第157期 北师大版 题型:022

1.如图,一个圆柱的底面周长是10 cm,圆柱的高为12 cm,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的最短路程是________

解:将圆柱沿侧面AD剪开,得到如图所示的侧面展开图,求蚂蚁爬行的最短路程,就是求________的长.在RtABC中,∠ACB90°,AC________BC________,由勾股定理,得AB2AC2BC2________,所以AB________,即蚂蚁爬行的最短路程是________

2.在上面求解过程中,用到的数学思想是________思想;在利用勾股定理解决实际问题时,除了这种数学思想,还会用到方程思想、分类思想等.在解决问题时要注意灵活运用这些数学思想哟!

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,地上有一圆柱,在圆柱下底面的A点处有一蚂蚁,它想沿圆柱表面爬行.吃到上底面上与A点相对的B点处的食物(π的近似值取3,以下同).
(1)当圆柱的高h=12厘米,底面半径r=3厘米时,蚂蚁沿侧面爬行时最短路程是多少;
(2)当圆柱的高h=3厘米,底面半径r=3厘米时,蚂蚁沿侧面爬行也可沿AC到上底面爬行时最短路程是多少;
(3)探究:当圆柱的高为h,圆柱底面半径为r时,蚂蚁怎样爬行的路程最短,路程最短为多少?

查看答案和解析>>

科目:初中数学 来源:2007年北京市西城区中考数学二模试卷(解析版) 题型:解答题

如图,地上有一圆柱,在圆柱下底面的A点处有一蚂蚁,它想沿圆柱表面爬行.吃到上底面上与A点相对的B点处的食物(π的近似值取3,以下同).
(1)当圆柱的高h=12厘米,底面半径r=3厘米时,蚂蚁沿侧面爬行时最短路程是多少;
(2)当圆柱的高h=3厘米,底面半径r=3厘米时,蚂蚁沿侧面爬行也可沿AC到上底面爬行时最短路程是多少;
(3)探究:当圆柱的高为h,圆柱底面半径为r时,蚂蚁怎样爬行的路程最短,路程最短为多少?

查看答案和解析>>

同步练习册答案