精英家教网 > 初中数学 > 题目详情

如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.

(1)画出位似中心点O;
(2)直接写出△ABC与△A′B′C′的位似比;
(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,画出△A′B′C′关于点O中心对称的△A″B″C″,并直接写出△A″B″C″各顶点的坐标.

(1)作图见解析;(2)2:1 ;(3)(6,0),(3,-2),(4,-4),作图见解析.

解析试题分析:(1)对应点连线的交点即为位似中心点;(2)根据网格中的距离即可写出△ABC与△A′B'C'的位似比;(3)作出△A'B'C'关于点 O中心对称的△A″B″C″,根据平面直角坐标系中的位置写出△A″B″C″各顶点的坐标.
试题解析:(1)图中点O为所求:

(2)△ABC与△A'B'C'的位似比等于2:1 .
(3)△A''B''C''为所求,A''(6,0); B''(3,-2); C''(4,-4).

考点:1.作图(位似和中心对称变换);2.平面直角坐标系和点的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

在矩形ABCD中,AB=10,BC=12,E为DC的中点,连接BE,作AF⊥BE,垂足为F.

(1)求证:△BEC∽△ABF;
(2)求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.

(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.
(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在6×8的网格图中,每个小正方形边长均为1,点O和△ABC的顶点均为小正方形的顶点.

⑴以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′和△ABC位似,且位似比为1:2
⑵连接⑴中的AA′,求四边形AA′C′C的周长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于点E,交BC边于点F,分别连结AF和CE。

(1)求证:四边形AFCE是菱形;
(2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长;
(3)在线段AC上是否存在一点P,使得2AE2=AC·AP?若存在,请说明点P的位置,并予以证明;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足 ∠MAN=45°,连结MC,NC,MN.

(1)填空:与△ABM相似的三角形是△       ,BM·DN=        ;(用含a的代数式表示)
(2)求∠MCN的度数;
(3)猜想线段BM,DN和MN之间的数量关系并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图:已知一次函数的图像分别交轴、轴于两点,且点在一次函数的图像上,轴于点

(1)求的值及两点的坐标;
(2)如果点在线段上,且,求点的坐标;
(3)如果点轴上,那么当△与△相似时,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.

(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案