精英家教网 > 初中数学 > 题目详情
18.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,3),△AOB绕点O逆时针旋转90°后得到△A1OB1
(1)点A关于点O中心对称的点P的坐标为(-3,-2);
(2)在网格内画出△A1OB1
(3)点A1、B1的坐标分别为(-2,3),(-3,1).

分析 (1)根据关于原点对称的点的坐标特点即可得出结论;
(2)根据图形旋转的性质画出△A1OB1即可;
(3)根据点A1、B1在坐标系中的位置即可得出结论.

解答 解:(1)∵A(3,2),
∴P(-3,-2).
故答案为:(-3,-2);

(2)如图,△A1OB1即为所求;

(3)由图可知,A1(-2,3),B1(-3,1).
故答案为:(-2,3),(-3,1).

点评 本题考查的是作图-旋转变换,熟知图形旋转不变性的性质是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

8.如图,已知直线y=$\frac{1}{3}$x+1与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.
(1)求点C的坐标与线段AD的长;
(2)点M在CD上,且CM=OM,求直线OM的解析式;
(3)把OM向左平移,使之经过点A,求平移后的OM的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在?ABCD中,∠BCD=120°,连接BD,过点A作AE∥BD交CD的延长线于点E,过点E作EF⊥BC交BC的延长线于点F,若CF=2,则AB=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.已知x1,x2是关于x的一元二次方程x2-2(m+1)x+m2+5=0的两实数根,若(x1-1)(x2-1)=28,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知(m,0),(n,0)是抛物线y=x2-2(a-1)x+a2-1与x轴的两个不同交点.
(1)求a的取值范围;
(2)若(m-1)(n-1)=10,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.已知二次函数y=ax2+bx+c的图象经过A(1,0)、B(-1,16),C(0,10)三点.
(1)求该函数解析式;
(2)用配方法将该函数解析式化为y=a(x+m)2+k的形式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.先填写下表,观察后回答下列问题:
a-0.000100.000111000
 $\root{3}{a}$-0.10 1 
(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.
(2)已知:$\root{3}{a}$=-50,$\root{3}{0.125}$=0.5,你能求出a的值吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.解方程:
(1)4x-3(20-x)=3
(2)$\frac{3x+1}{2}$-$\frac{x-1}{6}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.乘法公式的探究与应用:

(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是a2-b2(写成两数平方差的形式)
(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是a+b,宽是a-b,面积是(a+b)(a-b)(写成多项式乘法的形式).
(3)比较甲乙两图阴影部分的面积,可以得到公式(两个)
公式1:(a+b)(a-b)=a2-b2
公式2:a2-b2=(a+b)(a-b)
(4)运用你所得到的公式计算:10.3×9.7.

查看答案和解析>>

同步练习册答案