精英家教网 > 初中数学 > 题目详情
13.已知(m,0),(n,0)是抛物线y=x2-2(a-1)x+a2-1与x轴的两个不同交点.
(1)求a的取值范围;
(2)若(m-1)(n-1)=10,求a的值.

分析 (1)根据判别式的意义得到△=4(a-1)2-4(a2-1)>0,然后解不等式得到a的范围;
(2)根据根与系数的关系得到m+n=2 (a-1)=2a-2,mn=a2-1,则由(m-1)(n-1)=10得到a2-1-(2a-2)+1=a2-2a+2=10,然后解关于a的方程即可得到满足条件的a的值.

解答 解:(1)由题意知△=4(a-1)2-4(a2-1)>0,
解得a<1;
(2)∵(m,0),(n,0)是抛物线y=x2-2(a-1)x+a2-1与x轴的两个不同交点,
∴m、n为方程x2-2(a-1)x+a2-1=0的两根,
∴m+n=2 (a-1)=2a-2,mn=a2-1,
∵(m-1)(n-1)=10,
即mn-(m+n)+1=10,
∴a2-1-(2a-2)+1=a2-2a+2=10,
解得a=-2或4(>1,舍去),
∴a的值是-2.

点评 本题考查了抛物线与x轴的交点:对于二次函数y=ax2+bx+c(a,b,c是常数,a≠0),△=b2-4ac决定抛物线与x轴的交点个数:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.也考查了根与系数的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知:如图,线段OA、OB、OC、OD、OE在同一平面内,且∠AOE=110°,∠AOB=20°.
(1)若OB平分∠AOC,求∠COE的度数.
(2)在(1)条件下,若OD也平分∠BOE,求∠COD的度数.
(3)若线段OA与OB分别为同一钟表上某一时刻与分针,则经过多少时间,OA与OB第一次垂直.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.甲、乙两名队员参加射击训练,各自射击10次的成绩分别被制成下列统计图:
(1)通过以上统计图提取有关信息表完成下面两个表格:

甲队员的信息表-1
 成绩 5 6 7 8 9
 次数14
乙队员的信息表-2
 成绩 3 4 6 7 8 9 10
 次数11
(2)根据以上信息,整理分析数据如下表-3,请填写完整.
  平均成绩/环 中位数/环 众数/环 方差
 甲 7 71.2 
 乙7 7.5 4.2
(3)分别运用表-3中的四个统计量,简要分析这两名队员的射击训练成绩,若被派其中一名参赛,你认为应选哪名队员?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,∠AOB=90°,∠AOC为∠AOB外的一个锐角,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC.
(1)求∠MON的度数;
(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数;
(3)如果(1)中∠AOC=β(β为锐角),其他条件不变,求∠MON的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,3),△AOB绕点O逆时针旋转90°后得到△A1OB1
(1)点A关于点O中心对称的点P的坐标为(-3,-2);
(2)在网格内画出△A1OB1
(3)点A1、B1的坐标分别为(-2,3),(-3,1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.(1)计算:tan45°-$\sqrt{3}$tan30°+cos45°
(2)解方程:x2+2x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先化简,再求值:($\frac{{x}^{2}-2x+4}{x-1}$+2-x)÷$\frac{{x}^{2}+4x+4}{1-x}$,其中x取-2,-1,1中的一个数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在⊙O中,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线交BA的延长线于点P,连接BC.
(1)求证:∠PCA=∠B;
(2)填空:已知∠P=40°,AB=12cm,点Q在$\widehat{ABC}$上,从点A开始以πcm/s的速度逆时针运动到点C停止,设运动时间为ts.
①当t=3s时,以点A、Q、B、C为顶点的四边形面积最大;
②当t=$\frac{13}{3}$s时,四边形AQBC是矩形.

查看答案和解析>>

同步练习册答案