精英家教网 > 初中数学 > 题目详情
如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=5
5
,且tan∠EDA=
3
4

(1)判断△OCD与△ADE是否相似?请说明理由;
(2)求直线CE与x轴交点P的坐标;
(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.
(1)△OCD与△ADE相似.
理由如下:
由折叠知,∠CDE=∠B=90°,
∴∠CDO+∠EDA=90°,
∵∠CDO+∠OCD=90°,
∴∠OCD=∠EOA.
又∵∠COD=∠DAE=90°,
∴△OCD△ADE.

(2)∵tan∠EDA=
AE
AD
=
3
4

∴设AE=3t,则AD=4t,
由勾股定理得DE=5t,
∴OC=AB=AE+EB=AE+DE=3t+5t=8t.
由(1)△OCD△ADE,得
OC
AD
=
CD
DE

8t
4t
=
CD
5t

∴CD=10t.
在△DCE中,∵CD2+DE2=CE2
∴(10t)2+(5t)2=(5
5
2
解得t=1.
∴OC=8,AE=3,点C的坐标为(0,8),
点E的坐标为(10,3),
设直线CE的解析式为y=kx+b,
10k+b=3
b=8

解得
k=-
1
2
b=8

∴y=-
1
2
x+8,则点P的坐标为(16,0).

(3)满足条件的直线l有2条:y1=-2x+12,y2=2x-12.
如图:准确画出两条直线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知A(-1,0),E(0,-
2
2
),以点A为圆心,以AO长为半径的圆交x轴于另一点B,过点B作BFAE交⊙A于点F,直线FE交x轴于点C.
(1)求证:直线FC是⊙A的切线;
(2)求点C的坐标及直线FC的解析式;
(3)有一个半径与⊙A的半径相等,且圆心在x轴上运动的⊙P.若⊙P与直线FC相交于M,N两点,是否存在这样的点P,使△PMN是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,△AOB为正三角形,点B坐标为(2,0),过点C(-2,0)作直线L交AO于D,交AB于E,且使△ADE和△DCO的面积相等,求直线L的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某学校的复印任务原来由甲复印社承接,其收费y(元)与复印页数x(页)的关系如下表:
x(页)1002004001000
y(元)4080160400
(1)若y与x满足初中学过的某一函数关系,求函数的解析式;
(2)现在乙复印社表示:若学校先按每月付给200元的承包费,则可按每页0.15元收费.则乙复印社每月收费y(元)与复印页数x(页)的函数关系为______;
(3)在给出的坐标系内画出(1)、(2)中的函数图象,并回答每月复印页数在1200左右应选择哪个复印社?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知直角坐标平面上点A(2,0),P是函数y=x(x>0)图象上一点,PQ⊥AP交y轴正半轴于点Q(如图).
(1)试证明:AP=PQ;
(2)设点P的横坐标为a,点Q的纵坐标为b,那么b关于a的函数关系式是______;
(3)当S△AOQ=
2
3
S△APQ
时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

“幸福”新村响应市政府“创和谐社会,建平安咸宁”的号召,积极试行新的农村合作医疗制度.每位村民只须年初交纳合作医疗基金a元,便可享受年门诊费最多报销b元(即年门诊费中不超过b元的部分由村集体承担)和住院费按表①方法报销的优惠.该村的甲、乙、丙、丁、戊五位村民2005年的治病花费及一年中个人实际承担的总费用如表②所示.
表1
年住院费承担办法
不超过5000元的部分个人承担c%,其余由村集体承担
超过5000元但不超过20000元的部分个人承担d%,其余由村集体承担
超过2000元的部分全部由村集体承担
表2
村民门诊费(元)住院费(元)年个人承担总费用(元)
20060
160060
260080
70800380
28060002300
请根据上述信息,解答下列问题:
(1)填空:a=______元,b=______元;
(2)若该村一位村民住院费为x元(0≤x≤5000),他个人应承担的住院费为y元,求y与x的函数关系式;
(3)该村张大伯参加合作医疗后,若一年内门诊费为400元,住院费不低于7 000元,求张大伯一年中个人承担的总费用的范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,直线y=-x+2与x轴、y轴分别相交于点C、D,一个含45°角的直角三角板的锐角顶点A在线段CD上滑动,滑动过程中三角板的斜边始终经过坐标原点,∠A的另一边与x轴的正半轴相交于点B.
(1)试探索△AOB能否为等腰三角形?若能,请求出点B的坐标;若不能,请说明理由.
(2)如图2,若将题中“直线y=-x+2”、“∠A的另一边与x轴的正半轴相交于点B”分别改为:“直线y=-x+t(t>0)”、“∠A的另一边与x轴的负半轴相交于点B”(如图2),其他条件保持不变,请探索(1)中的问题(只考虑点A在线段CD的延长线上且不包括点D时的情况)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

今年的全国助残日这天,某单位的青年志愿者到距单位6千米的福利院参加“爱心捐助活动”.一部分人步行,另一部分人骑自行车,他们沿相同的路线前往.如图,l1、l2分别表示步行和骑自行车的人前往目的地所走的路程y(千米)随时间x(分钟)变化的函数图象.
(1)分别求l1、l2的函数表达式;
(2)求骑车的人用多长时间追上步行的人.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若一次函数y=kx-4的图象经过点(-2,4),则k等于(  )
A.-4B.4C.-2D.2

查看答案和解析>>

同步练习册答案