精英家教网 > 初中数学 > 题目详情
如图1,直线y=-x+2与x轴、y轴分别相交于点C、D,一个含45°角的直角三角板的锐角顶点A在线段CD上滑动,滑动过程中三角板的斜边始终经过坐标原点,∠A的另一边与x轴的正半轴相交于点B.
(1)试探索△AOB能否为等腰三角形?若能,请求出点B的坐标;若不能,请说明理由.
(2)如图2,若将题中“直线y=-x+2”、“∠A的另一边与x轴的正半轴相交于点B”分别改为:“直线y=-x+t(t>0)”、“∠A的另一边与x轴的负半轴相交于点B”(如图2),其他条件保持不变,请探索(1)中的问题(只考虑点A在线段CD的延长线上且不包括点D时的情况)
(1)由题意,把x=0代入y=-x+2,y=0代入y=-x+2,
∴点C、D的坐标分别为(2,0),(0,2),
∴OC=OD=2,CD=2
2
,∠OCD=∠ODC=45°,
当点A在线段CD上时,△AOB为等腰三角形有如下三种情况:
①OA=OB,则∠OBA=∠OAB=45°,因此∠AOB=90°,
点A与点D重合,点B与点C重合,所以点B的坐标为(2,0);
②AB=OB,则∠BOA=∠OAB=45°=∠OCD,
因此∠ABO=90°,AO=AC,
所以点B为线段的中点,点B的坐标为(1,0);
③AB=AO,由∠CAO=∠ADO+∠AOD得:
∠BAC+45°=∠AOD+45°,
则∠BAC=∠AOD,
又∠OCD=∠ODC,
所以∠ABC=∠OAD,
因此△ABC≌△OAD,
所以AC=OD=2,BC=AD=2
2
-2,
则OB=4-2
2

点B的坐标为(4-2
2
,0),
综上,在滑动过程中△AOB可为等腰三角形,点B的坐标分别为(2,0),(1,0),(4-2
2
,0);

(2)①若OA=OB,则∠OBA=∠OAB=45°,因此∠AOB=90°,点A与点D重合,
则OB=OD=t,所以点B的坐标为(-t,0),故与题意不符;
②若AB=OB,则∠BOA=∠OAB=45°=∠OCD,
因此∠ABO=90°,不成立;
③若AB=AO,则∠AOB=∠ABO=67.5°,
∴∠AOD=∠BOD-∠AOB=22.5°,
∴∠OAD=∠ODC-∠AOD=22.5°=∠AOD,
∴∠ABC=∠BAC=67.5°,
∴AD=OD=t,CB=CA=
2
t+t

∴OB=CB-CO=
2
t

∴点B的坐标为(-
2
t,0).
综上,在滑动过程中△AOB可为等腰三角形,点B的坐标分别为(-
2
t,0).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知一次函数的图象经过(2,5)和(-1,-1)两点,
(1)求这个一次函数解析式;
(2)求出此函数与坐标轴围成的三角形面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

“5.12”汶川地震发生后,某天广安先后有两批自愿者救援队分别乘客车和出租车沿相同路线从广安赶往重灾区平武救援,下图表示其行驶过程中路程随时间的变化图象.
(1)根据图象,请分别写出客车和出租车行驶过程中路程与时间之间的函数关系式(不写出自变量的取值范围);
(2)写出客车和出租车行驶的速度分别是多少;
(3)试求出出租车出发后多长时间赶上客车.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处.已知折叠CE=5
5
,且tan∠EDA=
3
4

(1)判断△OCD与△ADE是否相似?请说明理由;
(2)求直线CE与x轴交点P的坐标;
(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A,B在第一象限,ABx轴,AB=2,点Q(6,0),根据图象回答:
(1)点B的坐标是______;
(2)分别求出OA,BC所在直线的解析式;
(3)P是一动点,在折线OABC上沿O→A→B→C运动,不与O、C重合,点P(x,y),△OPQ的面积为S,求S与x的函数关系式,并指出自变量x的取值范围;
(4)在给出的坐标系中画出S随x变化的函数图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明同学受《乌鸦喝水》故事的启发,利用量桶和完全相同的若干个小球进行了如下操作(量桶是圆柱体,高为49cm,桶内水高30cm(如图1)):若将三个小球放入量桶中,水高如图2所示.
解答下列问题:
(1)若只放入一个小球,量桶中水面将升高______cm;
(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数表达式(不要求写出自变量的取值范围);
(3)要使量桶有水溢出,问至少要放入几个小球(如图3)?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线PA是一次函数y=x+n(n>0)的图象,直线PB是一次函数y=-2x+m(m>n)的图象,PA与y轴交于Q点(如图所示),若四边形PQOB的面积是
5
6
,AB=2.
(1)用m或n表示A、B、Q、三点的坐标;
(2)求A、B两点的坐标;
(3)求直线PA与PB的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小明同学受《乌鸦喝水》故事的启发,利用量筒和完全相同的若干个小球进行了如下操作(量筒是圆柱体,高为49cm,桶内水高30cm(如图1)):

若将三个小球放入量筒中,水高如图2所示,则放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数表达式为______(不要求写出自变量的取值范围);要使量筒有水溢出(如图3),则至少要放入的小球个数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线y=kx+b过点A(-1,5)且平行于直线y=-x.
(1)求这条直线的解析式;
(2)若点B(m,-5)在这条直线上,O为坐标原点,求m的值;
(3)求△AOB的面积.

查看答案和解析>>

同步练习册答案