【题目】如图,在△ABC中,∠C=90°,AB=10,cosB=
,点M是AB边的中点,将△ABC绕着点M旋转,使点C与点A重合,点A与点D重合,点B与点E重合,得到△DEA,且AE交CB于点P,那么线段CP的长是__________.
![]()
【答案】![]()
【解析】
连接PM,根据∠B的正切值设AC=3k,BC=4k,利用勾股定理列式求出k值,得到AC、BC的长,根据直角三角形斜边上的中线等于斜边的一半可得AM=DM=EM,再根据等边对等角的性质可得∠EAM=∠E,然后求出∠EAM=∠B,根据等腰三角形三线合一的性质可得PM⊥AB,然后求出△ABC和△PMB相似,根据相似三角形对应边成比例列式求出PB的长,再根据CP=BC-PB代入数据进行计算即可得解.
解:连接PM,
![]()
∵在Rt△ABC中,tanB=
,
∴设AC=3k,BC=4k,
则(3k)2+(4k)2=102,
解得k=2,
∴AC=3×2=6,BC=4×2=8,
∵点M是AB边的中点,△DEA是△ABC绕点M旋转得到,
∴AM=MB=DM=EM=5,
∴∠EAM=∠E,
又∵∠B=∠E,
∴∠EAM=∠B,
∴△APB是等腰三角形,
∵点M是AB的中点,
∴PM⊥AB,
∴△ABC∽△PMB,
∴
,
即
,
解得PB=
,
∴CP=BC-PB=8-
=
.
故答案为:
.
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=
,且经过点(2,0),下列说法:①abc<0;②﹣2b+c=0;③4a+2b+c<0;④若(
,y1)、(
,y2)是抛物线上的两点,则y1<y2;⑤
>m(am+b)(其中m≠
).其中说法正确的是_____
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在梯形ABCD中,AD//BC,∠BCD=90,对角线AC、BD相交于点E,且AC⊥BD.
![]()
(1)求证:
;
(2)点F是边BC上一点,联结AF,与BD相交于点G.如果∠BAF =∠DBF,求证:
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( )
![]()
A. 31° B. 28° C. 62° D. 56°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠A=∠B=90°,AB=7,AD=2,BC=3,如果边AB上的点P使得以P,A,D为顶点的三角形和以P,B,C为顶点的三角形相似,则这样的P点共有几个( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=
x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD的值最小时,点P的坐标为( )
![]()
A.(﹣1,0)B.(﹣2,0)C.(﹣3,0)D.(﹣4,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点
的坐标为
,
轴,垂足为
,
轴,垂足为
,点
分别是射线
、
上的动点,且点
不与点
、
重合,
.
![]()
(1)如图1,当点
在线段
上时,求
的周长;
(2)如图2,当点
在线段
的延长线上时,设
的面积为
,
的面积为
,请猜想
与
之间的等量关系,并证明你的猜想.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com