精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+c(a>0)交x轴于A、B两点,交y轴于C点,A点在B点的左侧,已知B点坐标为(8、0),tan∠ABC=
12
,△ABC的面积为8,
(1)求:抛物线的解析式;
(2)若动直线EF(EF∥x轴),从C点开始,以每秒1个长度单位的速度向X轴方向平移,与x轴重合时结束,并且分别交y轴、线段CB于E、F两点.动点P同时从B点出发在线段OB上以每秒2个长度单位的速度向原点O运动,运动到O点结束,连接FP,设运动时间为t秒,是否存在t的值,使以P、B、F为顶点的三角形与△ABC相似?若存在,请求出t的值;若不存在,请说明理由.
(3)在(2)的条件下,设AC与EF交于点M,求当t为何值时,M、P、A、F所围成精英家教网的图形是平行四边形、等腰梯形和等腰直角三角形?
分析:(1)在Rt△ABC中,由于B点坐标为(8、0),tan∠ABC=
1
2
,由此可以求出OC的长度,也就求出C的坐标,又△ABC的面积为8,由此可以求出线段AB的长度,然后就可以求出A的坐标,最后利用待定系数法即可求出抛物线的解析式;
(2)存在,首先可以分别求出BA、AC、BC的长度,同时也可以用t分别表示BP、BF的长度,然后利用相似三角形的性质即可求解;
(3)根据(2)MF∥AP,同时BP=2t,BF=4
5
-
5
t
,那么AP也可以用t表示,然后分别利用平行四边形、等腰梯形和等腰直角三角形的性质即可的关于t的方程解决问题.
解答:解:(1)在Rt△ABC中,∵B点坐标为(8、0),tan∠ABC=
1
2

∴OB=8,
而tan∠ABC=
OC
OB
=
1
2

∴OC=4,
∴C(0,4),
又∵△ABC的面积为8,
∴8=
1
2
×4×AB,
∴AB=4,即OA=OB-AB=8-4=4,
∴A(4,0),
依题意得
0=16a+4b+c
0=64a+8b+c
4=c

解之得:a=
1
8
,b=-
3
2
,c=4,
y=
1
8
x2-
3
2
x+4


(2)存在,根据(1)得BA=4,AC=4
2
,BC=4
5

依题意得:BP=2t,
∵CE=t,tan∠ABC=
1
2

∴EF=2t,∴CF=
5
t,
BF=4
5
-
5
t
精英家教网
由△BPF∽△BAC得
4
5
-
5
t
4
5
=
2t
4
,得t1=
4
3

由△BPF∽△BCA得
4
5
-
5
t
4
=
2t
4
5
化简,t2=
20
7

所以:t1=
4
3
t2=
20
7


(3)根据(2)得BP=2t,MF∥AP,
又直线AC经过A(4,0),C(0,4),那么其解析式为:y=-x+4,
而动直线EF(EF∥x轴),从C点开始,以每秒1个长度单位的速度向x轴方向平移,与x轴重合时结束,并且分别交y轴、线段CB于E、F两点,AC与EF交于点M,M的纵坐标为4-t,
∴M的横坐标为t,
而EF:OB=CE:OC,
∴EF=2t,
∴MF=2t-t=t,AP=OB-OA-BP=8-4-2t,
若M、P、A、F所围成的图形是平行四边形,那么MF=AP,
∴t=8-4-2t=4-2t,
∴t=
4
3

若M、P、A、F所围成的图形是等腰梯形,那么AM=PF,
∴t=
12
5

若M、P、A、F所围成的图形是等腰直角三角形,
那么AP重合,
∴t=2.
点评:本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求抛物线的解析式、相似三角形的性质与判定、平行四边形的性质、等腰梯形、等腰直角三角形的性质和三角形的面积求法.在求有关动点问题时要注意分析题意分情况讨论结果.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案