精英家教网 > 初中数学 > 题目详情
填空:已知,(如图)在△ABC中,BD为∠ABC的平分线,AB=BC,点P在BF上,PM⊥AD于M,
PN⊥CD于N,求证:PM=PN
证明:∵BD为∠ABC的平分线,
∴∠ABD=∠CBD
角平分线的定义
角平分线的定义

在△ABD和△CBD中
AB=CB  (已知)
∠ABD=∠CBD
∠ABD=∠CBD

BD=BD  (公共边)
∴△ABD≌△CBD
SAS
SAS

∠ADB=∠CDB
∠ADB=∠CDB

又∵
PM⊥ADPN⊥CD
PM⊥ADPN⊥CD
(已知),
PM=PN
PM=PN
分析:根据角平分线的定义可得出∠ABD=∠CBD,则可证明△ABD≌△CBD,从而得出∠ADB=∠CDB,再由PM⊥AD,PN⊥CD,得出PM=PN.
解答:证明:∵BD为∠ABC的平分线,
∴∠ABD=∠CBD (角平分线的定义)
在△ABD和△CBD中,
AB=CB(已知)
∠ABD=∠CBD
BD=BD(公共边)

∴△ABD≌△CBD SAS
∴∠ADB=∠CDB (全等三角形的对应角相等)
又∵PM⊥AD   PN⊥CD(已知),
∴PM=PN.
故答案为:角平分线的定义,∠ABD=∠CBD,SAS,∠ADB=∠CDB,PM⊥AD   PN⊥CD,PM=PN.
点评:本题考查了全等三角形的判定和性质、角平分线的定义以及角平分线的性质,是基础知识要熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知△ABC(如图),∠B=∠C=30度.请设计三种不同的分法,将△ABC分割成四个三角形,使得其中两个是全等三角形,而另外两个是相似但不全等的直角三角形.请画出分割线段,标出能够说明分法的所得三角形的顶点和内角度数(或记号),并在各种分法的空格线上填空.(画图工具不限,不要求证明,不要求写出画法)注:两种分法只要有一条分割线段位置不同,就认为是两种不同的分法.
分法一:
分割后所得的四个三角形中△
DAE
≌△
FAE
,Rt△
BDA
∽Rt△
CFE

分法二:
分割后所得的四个三角形中△
AFE
≌△
BFE
,Rt△
CDA
∽Rt△
BFE

分法三:
分割后所得的四个三角形中△
EFD
≌△
EFC
,Rt△
BAD
∽Rt△
ADE

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)解方程:
2
x
-
2
x(x+1)
=1

(2)已知△ABC(如图1),请用直尺(没有刻度)和圆规,作一个平行四边形,使它的三个顶点恰好是△ABC的三个顶点(只需作一个,不必写作法,但要保留作图痕迹)
精英家教网
(3)根据题意,完成下列填空:
如图2,L1与L2是同一平面内的两条相交直线,它们有1个交点,如果在这个平面内,再画第3直线L3,那么这3条直线最多可有
 
个交点;如果在这个平面内再画第4条直线L4,那么这4条直线最多可有
 
个交点.由此我们可以猜想:在同一平面内,6条直线最多可有
 
个交点,n( n为大于1的整数)条直线最多可有
 
个交点(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•徐州模拟)已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),C(n,-2)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O-A-B-C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.
(1)结合以上信息及图2填空:图2中的m=
2
5
2
5

(2)求B、C两点的坐标及图2中OF的长;
(3)若OM是∠AOB的角平分线,且点G与点H分别是线段AO与射线OM上的两个动点,直接写出HG+AH的最小值,请在图3中画出示意图并简述理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在如图1所示的平面直角坐标系xOy中,A、C两点的坐标分别为A(4,2),C(n,-2)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O-A-B-C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.

(1)结合以上信息及图2填空:图2中的m=
2
5
2
5

(2)求B、C两点的坐标及图2中OF的长.

查看答案和解析>>

同步练习册答案