精英家教网 > 初中数学 > 题目详情
(2006•达州)如图,抛物线y=-x2+bx+2交x轴于A、B两点(点B在点A的左侧),交y轴于点C,其对称轴为x=,O为坐标原点.
(1)求A、B、C三点的坐标;
(2)求证:∠ACB是直角;
(3)抛物线上是否存在点P,使得∠APB为锐角?若存在,求出点P的横坐标的取值范围;若不存在,请说明理由.

【答案】分析:(1)依题意可得A,B.C三点坐标;
(2)设抛物线的对称轴交x轴于M点,则M为AB的中点,AB为⊙M的直径,故∠ACB=90°;
(3)连接CD,求出D点坐标,如图1.设点P(x,y)是抛物线上任意一点,要使得∠APB为锐角,分情况讨论P点坐标.
解答:
(1)解:D=A、B、C三点的坐标分别为(4,O),(-1,O),(O,2).

(2)证明:△BOC∽△COA,∠BC0=∠CAO.

(3)解:设抛物线的对称轴交x轴于M点,则M为AB的中点,
且其坐标为(,0),∠BCA=90°,
∵B、C、A三点都在以BA为直径的0M上,
又抛物线y=-++2和⊙M都关于直线x=对称.
∴c点关于x=的对称点D必在抛物线上,也在⊙M上.
连接CD,交直线x=交于N点,易知N点坐标为(,2),而N为CD的中点,
∴D点坐标为(3,2),(7分)
作出⊙M,则⊙M将抛物线分成BC段、CD段、DA段及x轴下方的部分(如图1所示).
设点P(x,y)是抛物线上任意一点,
当P点在CD段(不包括C、D两点)及在x轴下方的部分时,P点均在⊙M外.
当P点在⊙M外时,不失一般性,令P点在CD段,
连接BP交OM于Q点,连接AQ、AP(如图2),则:
∠BQA是△PAQ的外角.
∴∠APQ<AQB.
又AB是⊙M的直径∠AQB-90°,
∴∠APB<90°,
故当P点在OM外时,P点对线段BA所张的角为锐角,即∠APB为锐角.
即当x<-1或0<x<3或x>4时,∠APB为锐角.
故抛物线上存在点P,当点P的横坐标x满足x<-1或O<x<3或x>4时,∠APB为锐角.(10分)
点评:本题考查的是二次函数的两点坐标式以及圆的切线等综合知识,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《相交线与平行线》(03)(解析版) 题型:解答题

(2006•达州)如图,在平行四边形ABCD中,过点B作BE⊥CD于E,F为AE上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD;
(2)若AB=5,AD=3,∠BAE=30°,求BF的长.

查看答案和解析>>

科目:初中数学 来源:2006年四川省达州市中考数学试卷(解析版) 题型:解答题

(2006•达州)如图,四边形ABCD内接于⊙O,过点A作⊙O的切线交CD的延长线于点E,若AB:DA=BC:ED.求证:AD=AB.

查看答案和解析>>

科目:初中数学 来源:2006年四川省达州市中考数学试卷(解析版) 题型:填空题

(2006•达州)如图正方形ABCD的边长为2cm,O是AB的中点,也是抛物线的顶点,OP⊥AB,两半圆的直径分别为OA与OB.抛物线经过C、D两点,且关于OP对称,则图中阴影部分的面积之和为    cm2.(π取3.14,结果保留2个有效数字)

查看答案和解析>>

科目:初中数学 来源:2006年四川省达州市中考数学试卷(解析版) 题型:填空题

(2006•达州)如图,在△ABE和△ACD中,AE=AD,添加一个条件    (只添加一个,符合要求即可),使△ABE≌△ACD.

查看答案和解析>>

科目:初中数学 来源:2006年四川省达州市中考数学试卷(解析版) 题型:填空题

(2006•达州)如图,B、C是洲河岸边两点,A是河对岸岸边一点,测得∠ABC=45°,∠ACB=45°,BC=200米,则点A到岸边BC的距离是    米.

查看答案和解析>>

同步练习册答案