精英家教网 > 初中数学 > 题目详情
已知抛物线y=ax2+bx+c与x轴交于A(-1,0),B(3,0),与y轴负半轴交于C,顶点为D.
(1)当OC=OB时,求抛物线的解析式;
(2)在(1)的条件下,抛物线的对称轴上是否存在点P,使△ACP绕点P逆时针旋转90°后,点C恰好落在抛物线上若存在,求旋转后△ACP三个顶点的坐标;
(3)若抛物线y=ax2+bx+c与y轴的交点C在y轴负半轴上移动,则△ACD与△ACB面积之比
S△ACDS△ACB
是否为一定值?若是定值,请求出其值;若不是定值,请说明理由.
精英家教网
分析:(1)可根据B点坐标和OB=OC得出C点的坐标,根据A、B、C三点坐标即可求出抛物线的解析式.
(2)本题分两种情况:
①如图:易知:C(0,-3),D(1,-4),如果过C作x轴的平行线,交抛物线的对称轴与M,那么三角形CMD是等腰直角三角形,因此M点符合P点的要求.此时C′与D重合,因此P(1,-3),C′(1,-4),A′(-2,-5).(求A′坐标时,设抛物线对称轴与x轴的交点为E点,过A′作抛物线对称轴的垂线设垂足为F,可以用全等三角形APE和PA′F来求出A′的坐标)
②如图:取C关于抛物线对称轴的对称点C′,连接AC′,那么AC′与抛物线对称轴的交点也符合P点的条件,此时三角形CPC′是等腰直角三角形,因此∠APA′是等腰直角三角形,那么此时P(1,-2),C(2,-3),A(-1,-4).
(3)可将A、B坐标代入抛物线的解析式中,求出a、b,a、c的关系,然后将抛物线解析式中的b、c用a替换掉,进而可用a表示出C、D的坐标,然后分别求出三角形ACB和三角形ACD的面积即可.
解答:解:(1)由题意知:OB=3,因此OC=OB=3,即C(0,-3)精英家教网
设抛物线的解析式为y=a(x+1)(x-3),已知抛物线过C点,则有:
a(0+1)(0-3)=-3,a=1,
∴抛物线的解析式为:y=x2-2x-3.

(2)A、C、P对应点的坐标为(-2,-5)(1,-4)(1,-3),
或(-1,-4),(2,-3),(1,-2).

(3)y=ax2-2ax-3a(a>0),
∴A(-1,0),B(3,0),C(0,-3a),D(1,-4a),
∴S△ACB=
1
2
×4×3a=6a,
∴S△ACD=
1
2
×1×3a+
1
2
(3a+4a)×1-
1
2
×2×4a=a,
S△ACD
S△ACB
=
a
6a
=
1
6
点评:本题考查了二次函数解析式的确定、图形的旋转变换、图形面积的求法等知识点,综合性强,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案