精英家教网 > 初中数学 > 题目详情
(2010•仙桃)如图,是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表面上,与“看”相对的面上的汉字是( )

A.南
B.世
C.界
D.杯
【答案】分析:利用正方体及其表面展开图的特点解题.方法比较灵活可让“看”字面不动,分别把各个面围绕该面折成正方体,这需要空间想象能力,如果想象不出就动手操作,或者拿手边的正方体展成该形状观察.
解答:解:这是一个正方体的平面展开图,共有六个面,其中面“南”与面“世”相对,面“杯”与面“非”相对,“看”与面“界”相对.
故选C.
点评:注意正方体的空间图形,从相对面入手,分析及解答问题.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《四边形》(04)(解析版) 题型:填空题

(2010•仙桃)如图,已知矩形ABCD,AB在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AD边上有一点E(2,1),过点E的直线与BC交于点F.若EF平分矩形ABCD的面积,则直线EF的解析式为   

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2010•仙桃)如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年全国中考数学试题汇编《一次函数》(03)(解析版) 题型:填空题

(2010•仙桃)如图,已知矩形ABCD,AB在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AD边上有一点E(2,1),过点E的直线与BC交于点F.若EF平分矩形ABCD的面积,则直线EF的解析式为   

查看答案和解析>>

科目:初中数学 来源:2010年湖北省江汉油田中考数学试卷(解析版) 题型:解答题

(2010•仙桃)如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,DB⊥DC,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M.点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)是否存在点P,使得以P、Q、M为顶点的三角形与△AOD相似?若存在,求出满足条件的点P的坐标;若不存在,请说明理由;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年湖北省江汉油田中考数学试卷(解析版) 题型:填空题

(2010•仙桃)如图,已知矩形ABCD,AB在y轴上,AB=2,BC=3,点A的坐标为(0,1),在AD边上有一点E(2,1),过点E的直线与BC交于点F.若EF平分矩形ABCD的面积,则直线EF的解析式为   

查看答案和解析>>

同步练习册答案