精英家教网 > 初中数学 > 题目详情
如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP精英家教网交BC于点E,连接BP交AC于点F.
(1)证明:∠CAE=∠CBF;
(2)证明:AE=BF.
分析:(1)根据等腰三角形三线合一的性质可得CH平分∠ACB,再证明△ACE和△BCF全等,然后根据全等三角形对应角相等可得结论;
(2)证明△AEC≌△BFC,根据全等三角形对应边相等即可证明.
解答:(1)证明:在等腰△ABC中,
∵CH是底边上的高线,精英家教网
∴∠ACH=∠BCH,
在△ACP和△BCP中,
AC=BC
∠ACH=∠BCH
CP=CP

∴△ACP≌△BCP(SAS),
∴∠CAE=∠CBF(全等三角形对应角相等);

(2)在△AEC和△BFC中
∠ACB=∠BCA
AC=BC
∠CAE=∠CBF

∴△AEC≌△BFC(ASA),
∴AE=BF(全等三角形对应边相等).
点评:本题主要考查全等三角形的判定和全等三角形的性质及等腰三角形的性质;熟练掌握定理和性质并灵活运用是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在等腰△ABC中,AB=AC,BE⊥AC,垂足为E,则∠1与∠A的关系式为(  )
A、∠1=∠A
B、∠1=
1
2
∠A
C、∠1=2∠A
D、无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰△ABC中,AB=AC,AB的垂直平分线DE交AB于点D,交另一腰AC于点E,若∠EBC=15°,则∠A=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,在等腰△ABC中,AB=AC,∠ABC=α,在四边形BDEC中,DB=DE,∠BDE=2α,M为CE的中点,连接AM,DM.
(1)在图中画出△DEM关于点M成中心对称的图形;
(2)求证AM⊥DM;
(3)当α=
45°
,AM=DM.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丽水)如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是
50°
50°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰△ABC中,AB=AC=10cm,直线DE垂直平分AB,分别交AB、AC于D、E两点.若BC=8cm,则△BCE的周长是
18
18
cm.

查看答案和解析>>

同步练习册答案