精英家教网 > 初中数学 > 题目详情
如图,抛物线y=ax2+bx+c与x轴交于点B(1,0)、C(-3,0),且过点A(3,6).
(1)求抛物线和直线AC的解析式;
(2)设此抛物线的顶点为P,对称轴与线段AC相交于点Q,连接CP、PB、BQ,试求四边形PBQC的面积.
(3)在x轴上找一点M,使以点B、P、M为顶点的三角形与△ABC相似,求点M的坐标.
分析:(1)利用待定系数法直接将点B(1,0)、C(-3,0)、A(3,6)的坐标代入抛物线的解析式就可以求出抛物线的解析式,设出直线AC的解析式,将A、C的坐标代入就可以了.
(2)根据抛物线的解析式求出对称轴,再求出Q点的坐标,再用S△BCQ+S△BCP就可以求出四边形PBQC的面积.
(3)根据两点间的距离公式求出AC、BC和AB的值分3种情况,当△ABC∽△MPB,△ABC∽△PMB,由相似三角形的性质可以求出对应的M的坐标.
解答:解:(1)∵点B(1,0)、C(-3,0)、A(3,6)在物线y=ax2+bx+c上,
0=a+b+c
0=9a-3b+c
6=9a+3b+c

解得,
a=
1
2
b=1
c=-
3
2

∴抛物线的解析式为:y=
1
2
x2+x-
3
2

设直线AC的解析式为y=kx+b,由题意,得
0=-3k+b
6=3k+b

解得
b=3
k=1

∴直线AC的解析式是:y=x+3.

(2)∵抛物线的解析式为:y=
1
2
x2+x-
3
2

y=
1
2
(x+1)2-2
∴对称轴x=-1,P(-1,-2)
∴y=-1+3=2,
∴Q(-1,2).
∵B(1,0)、C(-3,0),
∴BC=4,
∴S四边形CPDQ=S△BCQ+S△BCP
=
4×2
2
+
4×2
2

=8

(3)∵B(1,0)、C(-3,0)、A(3,6)、P(-1,-2),
∴由两点间的距离公式,得
AC=6
2
,AB=2
10
,BC=4,BP=2
2

当△ABC∽△M1PB时,
AC
BM1
=
BC
BP

6
2
BM1
=
4
2
2

BM1=6
∴M1(-5,0),
当△ABC∽△PM2B时,
BC
M2B
=
AC
BP

4
M2B
=
6
2
2
2

∴M2B=
4
3

∴M2(-
1
3
,0)
∴M(-5,0)或(-
1
3
,0)
点评:本题试一道二次函数的综合试题,考查了待定系数法求抛物线的解析式和直线的解析式,四边形的面积公式及相似三角形的判定及性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

8、如图,直线y=ax+b与抛物线y=ax2+bx+c的图象在同一坐标系中可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y1=-ax2-ax+1经过点P(-
1
2
9
8
),且与抛物线y2=ax2-ax-1相交于A,B两点.
(1)求a值;
(2)设y1=-ax2-ax+1与x轴分别交于M,N两点(点M在点N的左边),y2=ax2-ax-1与x轴分别交于E,F两点(点E在点F的左边),观察M,N,E,F四点的坐标,写出一条正确的结论,并通过计算说明;
(3)设A,B两点的横坐标分别记为xA,xB,若在x轴上有一动点Q(x,0),且xA≤x≤xB,过Q作一条垂直于x轴的直线,与两条抛物线分别交于C,D精英家教网两点,试问当x为何值时,线段CD有最大值,其最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线y=-ax2+ax+6a交x轴负半轴于点A,交x轴正半轴于点B,交y轴正半轴于点D,精英家教网O为坐标原点,抛物线上一点C的横坐标为1.
(1)求A,B两点的坐标;
(2)求证:四边形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,抛物线y=ax2+ax+c与y轴交于点C(0,-2),精英家教网与x轴交于点A、B,点A的坐标为(-2,0).
(1)求该抛物线的解析式;
(2)M是线段OB上一动点,N是线段OC上一动点,且ON=2OM,分别连接MC、MN.当△MNC的面积最大时,求点M、N的坐标;
(3)若平行于x轴的动直线与该抛物线交于点P,与线段AC交于点F,点D的坐标为(-1,0).问:是否存在直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案