分析 (1)连接AC、BC,证明△ACD∽△CBD,得出对应边成比例,即可得出结果;
(2)由CD2=AD•DB和已知条件得出62=AD(13-AD),解方程即可.
解答 (1)证明:连接AC、BC,如图所示:![]()
∵∠BCA=90°,
∴∠BCD+∠ACD=90°,
∵CD⊥AB,
∴∠BDC=∠ADC=90°,
∴∠A+∠ACD=90°,
∴∠A=∠BCD,
∴△ACD∽△CBD,
∴CD:BD=AD:CD,
∴CD2=AD•DB.
(2)解:∵CD2=AD•DB,DB=AB-AD=13-AD,
∴62=AD(13-AD),
解得:AD=9,或AD=4(不合题意,舍去),
即AD的长为9.
点评 此题考查了相似三角形的判定与性质;证明三角形相似得出比例式是解本题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 全市七年级学生是总体 | |
| B. | 2000名学生是总体的一个样本 | |
| C. | 每名学生的视力情况是总体的一个个体 | |
| D. | 样本容量是2000名 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com