精英家教网 > 初中数学 > 题目详情
(2006•太原)如图:已知直线y=kx+1经过点A(3,-2)、点B(a,2),交y轴于点M,
(1)求a的值及AM的长;
(2)在x轴的负半轴上确定点P,使得△AMP成等腰三角形,请你直接写出点P的坐标;
(3)将直线AB绕点A逆时针旋转45°得到直线AC,点D(-3,b)在AC上,连接BD,设BE是△ABD的高,过点E的射线EF将△ABD的面积分成2:3两部分,交△ABD的另一边于点F,求点F的坐标.

【答案】分析:(1)把A点坐标代入可求出直线的解析式,再把B点坐标代入求出a值,由两点间的距离公式求得AM的值;
(2)使△AMP为等腰三角形,应分三种情况:①AP=MP;②AM=AP;③AM=MP,由等腰三角形的性质可求得点P的坐标;
(3)由题意知,AB绕点A逆时针旋转45°得到的直线AC与与x轴平行,求得点D的坐标,求得△ADB的面积后,点P的位置应分两种情况计算:当点P在AB上时,又分两种情况;当点P在BD上时,可得是不存在的.
解答:解:(1)∵点A(3,-2)在直线y=kx+1上,
∴-2=3k+1,
∴k=-1,
∴解析式为y=-x+1,把点B坐标代入解析式,
得:2=-a+1,
∴a=-1,
∴点B坐标为(-1,2),
令x=0,则y=1,
∴点M的坐标为(0,1),
∴AM==3

(2)设P点坐标为(a,0),
①当AP=MP时,则△APM是等腰三角形,
∴(a-3)2+4=a2+1,
解得:a=2,
∴P坐标(2,0);
不符合题意,故舍去,
②当AM=AP时,
∴3=
解得a=3-
∴P坐标(3-,0);
③当MP=AM=3时,
点P的坐标为(-,0);

(3)直线AB绕点A逆时针旋转45°时,得到的直线AC与x轴平行,
∴D(-3,b),
∴b=-2,
∵BE是△ABD的高,
∴点E坐标为(-1,-2),
∴AD=6,BE=4,
又S△ABD=AD•BE=×6×4=12,
EF将△ABD的面积分成2:3两部分,
∴两部分面积分别为12×=,12×=
设点F在AB上,则F点坐标为(a,b),
×4×(2+b)=
∴b=
将F(a,)代入y=-x+1得,a=
同理可得另一种可能F(-),
若F在AB上,F或F
若F在BD上,由S△BDE=DE•BE=4<12×=,故这种情况不存在.
点评:本题考查的是一次函数的性质以及考生的理解图形能力,难度中上,注意要分类讨论.
练习册系列答案
相关习题

科目:初中数学 来源:2006年山西省太原市中考数学试卷(解析版) 题型:解答题

(2006•太原)如图:已知直线y=kx+1经过点A(3,-2)、点B(a,2),交y轴于点M,
(1)求a的值及AM的长;
(2)在x轴的负半轴上确定点P,使得△AMP成等腰三角形,请你直接写出点P的坐标;
(3)将直线AB绕点A逆时针旋转45°得到直线AC,点D(-3,b)在AC上,连接BD,设BE是△ABD的高,过点E的射线EF将△ABD的面积分成2:3两部分,交△ABD的另一边于点F,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源:2006年山西省太原市中考数学试卷(解析版) 题型:解答题

(2006•太原)如图,在15×15的网格中,每个小正方形的边长均为1,每个小格的顶点叫做格点.在图中画出以格点为顶点,边长都为整数的一个锐角△ABC,并在每条边上标出其长度.

查看答案和解析>>

科目:初中数学 来源:2006年山西省太原市中考数学试卷(解析版) 题型:选择题

(2006•太原)如图,在⊙O中,点C是的中点,∠OAB=40°,则∠BOC等于( )

A.40°
B.50°
C.70°
D.80°

查看答案和解析>>

科目:初中数学 来源:2006年山西省太原市中考数学试卷(解析版) 题型:选择题

(2006•太原)如图,△ABC与△A1B1C1关于直线l对称,将△A1B1C1向右平移得到△A2B2C2,由此得出下列判断:(1)AB∥A2B2;(2)∠A=∠A2;(3)AB=A2B2.其中正确的是( )

A.(1)(2)
B.(2)(3)
C.(1)(3)
D.(1)(2)(3)

查看答案和解析>>

同步练习册答案