精英家教网 > 初中数学 > 题目详情
19.为了从甲、乙两人中选拔一人参加射击比赛,现对他们的射击成绩进行了测试,5次打靶命中的环数如右:甲:8,7,10,7,8; 乙:9,5,10,9,7.
(1)将下表填写完整;
平 均 数方 差
81.2
83.2
(2)若你是教练,根据以上信息,你会选择谁参加射击比赛,理由是什么?

分析 (1)根据平均数的计算公式代值计算求出甲与乙的平均数,再根据方差的计算公式求出甲的极差;
(2)根据甲乙的平均数、方差,在平均数相同的情况下,选择方差较小的即可.

解答 解:(1)甲的平均数为:$\frac{1}{5}$(8+7+10+7+8)=8,乙的平均数为:$\frac{1}{5}$(9+5+10+9+7)=8,
甲的方差为:$\frac{1}{5}$[2×(8-8)2+2×(7-8)2+(10-8)2]=1.2.
填表如下:

平 均 数方 差
81.2
83.2
故答案为:第1列填8,8; 第2列填1.2; 

(2)选择甲参加射击比赛,原因是甲乙两人的平均数一样,甲的方差比较小,根据方差越小越稳定,因此甲比较稳定,所以选择甲.

点评 本题考查方差和平均数:一般地设n个数据,x1,x2,…xn的平均数为$\overline{x}$,则方差S2=$\frac{1}{n}$[(x1-$\overline{x}$)2+(x2-$\overline{x}$)2+…+(xn-$\overline{x}$)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.平均数是所有数据的和除以数据的个数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

9.如图,过反比例函数y=$\frac{3}{x}$(x>0)和y=$\frac{7}{x}$(x>0)的图象之间的点P作两坐标轴的垂线,分别交两坐标轴于点A,B,交两函数图象于点C,E,F,D.若四边形OAPB与四边形CDEF都是正方形,则正方形CDEF的面积为$\frac{8}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知:∠1=∠2,3=∠4,过点P作PD∥BC交直线AB于点D,交直线AC于点H,PK∥AC交直线BC于点K,请你解答下列问题:

(1)如图1,求证:BD=DH-PK;
(2)如图2、3,DH、PK又有怎样的数量关系?直接写出你的猜想,不需要证明;
(3)在(1)(2)的条件下,若DB=10,CH=4,则DH=14或6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图1所示,已知抛物线y=-x2+4x+5的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上.
(1)直接写出D点和E点的坐标;
(2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,S△HGF:S△BGF=5:6?
(3)图2所示的抛物线是由y=-x2+4x+5向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠1=∠2,∠C=∠D.
求证:AC∥DF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.如果点P1(-3,y1)、P2(-2,y2)在一次函数y=2x+b的图象上,则y1<y2.(填“>”,“<”或“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.定义运算“★”:对于任意实数a,b,都有a★b=a2+b,如:2★4=22+4=8.若(x-1)★3=7,则实数x的值是3或-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图所示,已知CD是△ABC中∠ACB的外角平分线,请说明:∠BAC>∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,一次函数y=ax+b的图象与反比例函数y=-$\frac{3}{x}$的图象交于A(-1,m)、B(3,n)两点,与x轴交于D点,且C、D两点关于y轴对称.
(1)求A、B两点的坐标以及一次函数的函数关系式;
(2)求△ABC的面积.
(3)在x轴上是否存在点P,使得|PA-PB|的值最大?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案