精英家教网 > 初中数学 > 题目详情
精英家教网已知抛物线y=ax2+bx+1经过点A(1,3)和点B(2,1).
(1)求此抛物线解析式;
(2)点C、D分别是x轴和y轴上的动点,求四边形ABCD周长的最小值;
(3)过点B作x轴的垂线,垂足为E点.点P从抛物线的顶点出发,先沿抛物线的对称轴到达F点,再沿FE到达E点,若P点在对称轴上的运动速度是它在直线FE上运动速度的
2
倍,试确定点F的位置,使得点P按照上述要求到达E点所用的时间最短.(要求:简述确定F点位置的方法,但不要求证明)
分析:(1)将A、B的坐标代入抛物线的解析式中,通过联立方程组即可求得待定系数的值,从而确定该抛物线的解析式.
(2)取A关于y轴的对称点A′,取B关于x轴的对称点B′,根据轴对称和两点间线段最短可得:此时A′B′的长即为AD+CD+BC的最小值,易求得A′、B′的坐标,即可得到线段A′B′的长,那么AB+A′B′即为四边形ABCD的最小周长.
(3)由于点P在对称轴上的运动速度较快,因此尽量使用这个速度可以使点P到E点的时间最少;由于点P在对称轴上的速度是P在直线FE上的
2
倍,因此只有当△FHE(设对称轴与x轴的交点为H)为等腰直角三角形时,从F→H→E和F→E所用时间相同,因此可过E作直线FE使得EF与对称轴的夹角为45°,那么此时直线EF与对称轴的交点就是所求的点F,易求得AH的长,而EH=FH=1,由此可求得F点的坐标.
解答:精英家教网解:(1)依题意:
3=a+b+1
1=4a+2b+1

解得
a=-2
b=4

∴抛物线的解析式为y=-2x2+4x+1.

(2)点A(1,3)关于y轴的对称点A'的坐标是(-1,3),
点B(2,1)关于x轴的对称点B'的坐标是(2,-1);
由对称性可知AB+BC+CD+DA=AB+B'C+CD+DA'≥AB+A'B',
由勾股定理可求AB=
5
,A'B'=5.
所以,四边形ABCD周长的最小值是AB+A′B′=5+
5

精英家教网
(3)确定F点位置的方法:过点E作直线EG使对称轴到直线EG成45°角,
则EG与对称轴的交点为所求的F点;
设对称轴于x轴交于点H;
在Rt△HEF中,由HE=1,∠FHE=90°,∠EFH=45°,
得HF=1.
所以,点F的坐标是(1,1).
点评:此题考查了二次函数解析式的确定以及平面展开-最短路径问题;(3)题中,能够抓住点P在对称轴和直线FE上的速度关系,是判断F点位置的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案