精英家教网 > 初中数学 > 题目详情
如图,已知D是BC延长线上一点,DE切△ABC的外接圆于E,DE∥AC,AE、BC的延长线交于G,BE交AC于F.
(1)求证:AE2=AB•CD;
(2)若AE=2,EG=6,AB=3,求GD的长.

【答案】分析:(1)首先连接EC,由弦切角定理,易证得∠DEC=∠EAC,又由DE∥AC,易证得∠DEC=∠ACE,即可得∠ACE=∠EAC,由等角对等边即可证得AE=EC,易证得△BEA∽△EDC,然后由相似三角形的对应边成比例,即可证得结论;
(2)由(1)可求得CD的长,然后根据平行线分线段成比例定理,即可求得GD的长.
解答:(1)证明:连接EC,
∵DE切△ABC的外接圆于E,
∴∠DEC=∠EAC,
∵DE∥AC,
∴∠ACE=∠DEC,
∴∠ACE=∠EAC,
∴AE=CE,
∵∠ABE=∠ACE,
∴∠ABE=∠DEC,
∵∠ECD+∠BCE=180°,∠BAE+∠BCE=180°,
∴∠BAE=∠ECD,
∴△BEA∽△EDC,

∴AE•EC=AB•CD,
∴AE2=AB•CD;

(2)解:∵AE=2,AB=3,
∴CD==
∵DE∥AC,EG=6,


解得:GD=4.
点评:此题考查了弦切角定理、等腰三角形的判定与性质、相似三角形的判定与性质以及平行线分线段成比例定理.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在风景区测量塔高时,塔的底部不能直接到达.测绘员从景观台(横截面为梯形ABCD)的底部A延坡面的AB方向走30米到达顶部B处,用侧角仪(测角仪的高度忽略不计)在点B处测得塔顶E的仰角是45°,沿BC方向走20米到达点C处测得塔顶E的仰角是60°.已知坡面AB的坡度是1:
3
.根据上述测量数据能否求出塔高?若能,请求出塔高(精确到1米);若不能,说明还需测出哪些量才能求出塔高.
精英家教网

查看答案和解析>>

科目:初中数学 来源:初中数学解题思路与方法 题型:047

如图,已知四边形ABCD中,AD=BC,M是AB中点,N是CD中点,AD的延长线交MN的延长于F,BC的延长线交MN的延长线于E,求证:∠1=∠2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在风景区测量塔高时,塔的底部不能直接到达.测绘员从景观台(横截面为梯形ABCD)的底部A延坡面的AB方向走30米到达顶部B处,用侧角仪(测角仪的高度忽略不计)在点B处测得塔顶E的仰角是45°,沿BC方向走20米到达点C处测得塔顶E的仰角是60°.已知坡面AB的坡度是1:数学公式.根据上述测量数据能否求出塔高?若能,请求出塔高(精确到1米);若不能,说明还需测出哪些量才能求出塔高.

查看答案和解析>>

科目:初中数学 来源:2009年上海市青浦区中考数学一模试卷(解析版) 题型:解答题

(2009•青浦区一模)如图,在风景区测量塔高时,塔的底部不能直接到达.测绘员从景观台(横截面为梯形ABCD)的底部A延坡面的AB方向走30米到达顶部B处,用侧角仪(测角仪的高度忽略不计)在点B处测得塔顶E的仰角是45°,沿BC方向走20米到达点C处测得塔顶E的仰角是60°.已知坡面AB的坡度是1:.根据上述测量数据能否求出塔高?若能,请求出塔高(精确到1米);若不能,说明还需测出哪些量才能求出塔高.

查看答案和解析>>

同步练习册答案