精英家教网 > 初中数学 > 题目详情
在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=   
【答案】分析:首先过A作AG⊥BD于G.根据等腰三角形底边上的任意一点到两腰距离的和等于腰上的高,则PE+PF=AG.利用勾股定理求得BD的长,再根据三角形的面积计算公式求得AG的长,即为PE+PF的长.
解答:解:如图,过A作AG⊥BD于G,
则S△AOD=×OD×AG,S△AOP+S△POD=×AO×PF+×DO×PE=×DO×(PE+PF),
∵S△AOD=S△AOP+S△POD
∴PE+PF=AG,
∵AD=12,AB=5,
∴BD==13,


故答案为:
点评:本题考查矩形的性质、等腰三角形的性质、三角形的面积计算.解决本题的关键是明白等腰三角形底边上的任意一点到两腰距离的和等于腰上的高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在矩形ABCD中,已知E是BC的中点,∠BAE=30°,AE=2,则AC=(  )
A、3
B、2
3
C、
7
D、
6

查看答案和解析>>

科目:初中数学 来源: 题型:

在矩形ABCD中,已知AB=a,BC=b,P是边CD上异于点C、D的任意一点.
(1)若a=2b,当点P在什么位置时,△APB与△BCP相似?(不必证明)
(2)若a≠2b,①判断以AB为直径的圆与直线CD的位置关系,并说明理由;②是否存在点P,使以A、B、P为顶点的三角形与以A、D、P为顶点的三角形相似?(不必证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在矩形ABCD中,已知AB=2,BC=3,点E为AD边上一动点(不与A、D重合),连接CE,作EF⊥CE交AB边于F
(1)求证:△AEF∽△DCE;
(2)当△ECF∽△AEF时,求AF的长;
(3)在点E的运动过程中,AD边上是否存在异于点E的点G,使△AGF∽△DCG成立?若存在,请猜想点G的位置,并给出证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,已知AD=15,AB=8,P是AD边上任意一点,PE⊥BD,PF⊥AC,E,F分别是垂足,那么PE+PF=
120
17
120
17

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,已知AB=1,BC=2,∠ABC的平分线交AD于点F,E为BC的中点,连接EF.
(1)求BF的长度;
(2)求证:四边形ABEF是正方形;
(3)设点P是线段BF上的一个动点,点N是矩形ABCD的对称中心,是否存在点P,使∠APN=90°?若存在,请直接写出BP的长度;若不存在请说明理由.

查看答案和解析>>

同步练习册答案