【题目】已知
,函数
,若函数
的图像上有且只有两对点关于
轴对称,则
的取值范围是________
【答案】![]()
【解析】
运用对称性及单调性求得x>0时,f(x)的最大值,再求得关于y轴对称的函数和图象,画出f(x)和g(x)的图象,结合图象求得仅有两个交点的a的范围.
令
,
则
是由
向右平移1个单位得到的,
而
是R上的偶函数,且在
上单减,在
上单增,
∴
关于x=1对称,且在
上单减,在
上单增,
即当x=1时,f1(x)min=2,
∴当x>0时,函数
,关于x=1对称,且在
上单增,在
上单减,∴当x>0时,
;
∴
的大致图象如图所示:
![]()
若f(x)图象仅有两对点关于y轴对称,
即f(x)(x<0)的图象关于y轴对称的函数图象与f(x)(x>0)仅有两个交点,
而当x<0时,f(x)=(x+1)2+a.
设其关于y轴对称的函数为g(x),
∴g(x)=f(﹣x)=(x﹣1)2+a(x>0),∴g(x)
,
又当x=0时,
,而当x=0时,(x﹣1)2+a
+1,
当g(x)与f(x)仅有两个交点时,
且![]()
∴
,
综上,a的取值范围是(
,
),
故答案为:(
,
).
科目:高中数学 来源: 题型:
【题目】如图,在等腰梯形
中,
,
,
,四边形
为矩形,平面
平面
,
.
![]()
(1)求证:
平面
;
(2)点
在线段
上运动,设平面
与平面
所成二面角的平面角为
(
),试求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,直线
的参数方程为
(
为参数)。在极坐标系(与直角坐标系
取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,圆
的极坐标方程为
。
(1)求直线
的普通方程和圆
的直角坐标方程;
(2)设圆
与直线
交于
,
两点,若点
的坐标为
,求
。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知A(4,0)、B(1,0),动点M满足|AM|=2|BM|.
(1)求动点M的轨迹C的方程;
(2)直线l:x+y=4,点N∈l,过N作轨迹C的切线,切点为T,求NT取最小时的切线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两个无穷数列
分别满足
,
,
其中
,设数列
的前
项和分别为
,
(1)若数列
都为递增数列,求数列
的通项公式;
(2)若数列
满足:存在唯一的正整数
(
),使得
,称数列
为“
坠点数列”
①若数列
为“5坠点数列”,求
;
②若数列
为“
坠点数列”,数列
为“
坠点数列”,是否存在正整数
,使得
,若存在,求
的最大值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,
,其中
.
(1)若
,令函数
,解不等式
;
(2)若
,
,求
的值域;
(3)设函数
,若对于任意大于等于2的实数
,总存在唯一的小于2的实数
,使得
成立,试确定实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com