精英家教网 > 高中数学 > 题目详情

【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2019年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示:

1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司20204月份的利润;

2)甲公司新研制了一款产品,需要采购一批新型材料,现有AB两种型号的新型材料可供选择,按规定每种新型材料最多可使用4个月,但新材料的不稳定性会导致材料的使用寿命不同,现对AB两种型号的新型材料对应的产品各100件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:

经甲公司测算平均每件新型材料每月可以带来6万元收人入,不考虑除采购成本之外的其他成本,A型号材料每件的采购成本为10万元,B型号材料每件的采购成本为12万元.假设每件新型材料的使用寿命都是整月数,且以频率作为每件新型材料使用寿命的概率,如果你是甲公司的负责人,以每件新型材料产生利润的平均值为决策依据,你会选择采购哪款新型材料?

参考数据:.

参考公式:回归直线方程,其中.

【答案】1)线性回归方程为,利润为33百万元;(2)应该采购A型新材料.

【解析】

1)根据题设的折线图中的统计数据,求得其平均数,以及回归系数,求得回归直线的方程,代入时,即可作出预测;

2)由频率估计概率,求得每件AB型新材料可产生的利润的平均值,即可得到结论.

1)由题意,根据题设的折线图可知,统计数据共有6组,

计算可得

所以

所以月度利润与月份代码之间的线性回归方程为.

时,可得.

故预计甲公司20204月份的利润为33百万元.

2)由频率估计概率,每件A型新材料可使用1个月,2个月,3个月和4个月的概率,

分别为0.20.350.350.1

所以每件A型新材料可产生的利润的平均值为

(万元).

由频率估计概率,每件B型新材料可使用1个月,2个月,3个月和4个月的概率,

分别为0.150.20.40.25

所以每件B型新材料可产生的利润的平均值为

(万元).

因为,所以应该采购A型新材料.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直棱柱中,底面是菱形,,点FQ是棱的中点,是棱上的点,且

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某人经营淡水池塘养草鱼,根据过去期的养殖档案,该池塘的养殖重量(百斤)都在百斤以上,其中不足百斤的有期,不低于百斤且不超过百斤的有期,超过百斤的有期.根据统计,该池塘的草鱼重量的增加量(百斤)与使用某种饵料的质量(百斤)之间的关系如图所示.

1)根据数据可知具有线性相关关系,请建立关于的回归方程;如果此人设想使用某种饵料百斤时,草鱼重量的增加量须多于百斤,请根据回归方程计算,确定此方案是否可行?并说明理由.

2)养鱼的池塘对水质含氧量与新鲜度要求较高,某商家为该养殖户提供收费服务,即提供不超过台增氧冲水机,每期养殖使用的冲水机运行台数与鱼塘的鱼重量有如下关系:

鱼的重量(单位:百斤)

冲水机只需运行台数

若某台增氧冲水机运行,则商家每期可获利千元;若某台冲水机未运行,则商家每期亏损千元.视频率为概率,商家欲使每期冲水机总利润的均值达到最大,应提供几台增氧冲水机?

附:对于一组数据,其回归方程的斜率和截距的最小二乘估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lnxsinx,记fx)的导函数为f'x).

1)若hx)=axf'x)是(0,+∞)上的单调递增函数,求实数a的取值范围;

2)若x0,2π),试判断函数fx)的极值点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB是平面的斜线段,A为斜足,点C满足,且在平面内运动,则有以下几个命题:

①当时,点C的轨迹是抛物线;

②当时,点C的轨迹是一条直线;

③当时,点C的轨迹是圆;

④当时,点C的轨迹是椭圆;

⑤当时,点C的轨迹是双曲线.

其中正确的命题是__________.(将所有正确的命题序号填到横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在一旅游区内原有两条互相垂直且相交于点O的道路l1l2,一自然景观的边界近似为圆形,其半径约为1千米,景观的中心Cl1l2的距离相等,点C到点O的距离约为10千米.现拟新建四条游览道路方便游客参观,具体方案:在线段OC上取一点P,新建一条道路OP,并过点P新建两条与圆C相切的道路PMPNMN为切点),同时过点P新建一条与OP垂直的道路ABAB分别在l1l2上).为促进沿途旅游经济,新建道路长度之和越大越好,求新建道路长度之和的最大值.(所有道路宽度忽略不计)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,(.

(Ⅰ)若函数有且只有一个零点,求实数的取值范围;

(Ⅱ)设,若,若函数对恒成立,求实数的取值范围.是自然对数的底数,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题12分)

AB是治疗同一种疾病的两种药,用若干试验组进行对比试验。每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠只数比服用B有效的多,就称该试验组为甲类组。设每只小白鼠服用A有效的概率为,服用B有效的概率为

()求一个试验组为甲类组的概率;

() 观察3个试验组,用表示这3个试验组中甲类组的个数,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,.过直线的平面分别交棱EF两点.

1)求证:

2)若直线与平面所成角为,且,求二面角的余弦值.

查看答案和解析>>

同步练习册答案