【题目】如图,四边形
为菱形,
,
平面
,
,
∥
,
为
中点.
![]()
(1)求证:
∥平面
;
(2)求证:
;
(3)若
为线段
上的点,当三棱锥
的体积为
时,求
的值.
【答案】(1)见解析;(2)见解析;(3)![]()
【解析】试题分析:(1)设
,由三角形中位线性质以及平行四边形性质得四边形
为平行四边形,即得
∥
.再根据线面平行判定定理得结论,(2)根据菱形性质得
,再根据线面垂直得
.由线面垂直判定定理得
平面
,即得结论,(3)过
作
的平行线交
于
,根据条件可得
为三棱锥
的高,再根据三棱锥体积公式列方程解得
的值.
试题解析:
![]()
(1) 设
,连结
.
因为
分别是
的中点,
因为
//
,且
,
因为
//
,且
,所以
//
,且
.
所以四边形
为平行四边形.所以
∥
.
又因为
平面
,
平南
,
所以
∥平面
.
(2)因为
为菱形,所以
.
因为
平面
,所以
.
因为
,所以
平面
.
又因为
平面
,所以
.
(3)过
作
的平行线交
于
.
由已知
平面
,所以
平面
.
所以
为三棱锥
的高.
因为三棱锥
的体积为
,所以三棱锥
的体积
.
所以
.所以
.所以
.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
,
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,若直线
与曲线
相切;
(1)求曲线
的极坐标方程;
(2)在曲线
上取两点
,
与原点
构成
,且满足
,求面积
的最大值.
【答案】(1)
;(2)![]()
【解析】试题分析:(1)利用极坐标与直角坐标的互化公式可得直线
的直角坐标方程为
,
,消去参数
可知曲线
是圆心为
,半径为
的圆,由直线
与曲线
相切,可得:
;则曲线C的方程为
, 再次利用极坐标与直角坐标的互化公式可得
可得曲线C的极坐标方程.
(2)由(1)不妨设M(
),
,(
),
,
,
由此可求
面积的最大值.
试题解析:(1)由题意可知直线
的直角坐标方程为
,
曲线
是圆心为
,半径为
的圆,直线
与曲线
相切,可得:
;可知曲线C的方程为
,
所以曲线C的极坐标方程为
,
即
.
(2)由(1)不妨设M(
),
,(
),
,
![]()
,
当
时,
,
所以△MON面积的最大值为
.
【题型】解答题
【结束】
23
【题目】已知函数
的定义域为
;
(1)求实数
的取值范围;
(2)设实数
为
的最大值,若实数
,
,
满足
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学有学生500人,学校为了解学生课外阅读时间,从中随机抽取了50名学生,收集了他们2018年10月课外阅读时间(单位:小时)的数据,并将数据进行整理,分为5组:[10,12),[12,14),[14,16),[16,18),[18,20],得到如图所示的频率分布直方图.
![]()
(Ⅰ)试估计该校所有学生中,2018年10月课外阅读时间不小于16小时的学生人数;
(Ⅱ)已知这50名学生中恰有2名女生的课外阅读时间在[18,20],现从课外阅读时间在[18,20]的样本对应的学生中随机抽取2人,求至少抽到1名女生的概率;
(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,试估计该校学生2018年10月课外阅读时间的平均数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知圆
的半径为2,圆心在
轴的正半轴上,且与直线
相切.
(1)求圆
的方程。
(2)在圆
上,是否存在点
,使得直线
与圆
相交于不同的两点
,且△
的面积最大?若存在,求出点
的坐标及对应的△
的面积;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)求经过直线3x+4y-2=0与直线x-y+4=0的交点P,且垂直于直线x-2y-1=0的直线方程;
(2)求过点P(-1,3),并且在两坐标轴上的截距相等的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了配合新冠疫情防控,某市组织了以“停课不停学,成长不停歇”为主题的“空中课堂”,为了了解一周内学生的线上学习情况,从该市中抽取1000名学生进行调査,根据所得信息制作了如图所示的频率分布直方图.
![]()
(1)为了估计从该市任意抽取的3名同学中恰有2人线上学习时间在[200,300)的概率
,特设计如下随机模拟的方法:先由计算器产生0到9之间取整数值的随机数,依次用0,1,2,3,…9的前若干个数字表示线上学习时间在[200,300)的同学,剩余的数字表示线上学习时间不在[200,300)的同学;再以每三个随机数为一组,代表线上学习的情况.
假设用上述随机模拟方法已产生了表中的30组随机数,请根据这批随机数估计概率
的值;
907 966 191 925 271 569 812 458 932 683 431 257 027 556
438 873 730 113 669 206 232 433 474 537 679 138 602 231
(2)为了进一步进行调查,用分层抽样的方法从这1000名学生中抽出20名同学,在抽取的20人中,再从线上学习时间[350,450)(350分钟至450分钟之间)的同学中任意选择两名,求这两名同学来自同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
已知
=(cosx+sinx,sinx),
=(cosx-sinx,2cosx),
(Ⅰ)求证:向量
与向量
不可能平行;(Ⅱ)若f(x)=
·,且x∈
时,求函数f(x)的最大值及最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】德国著名数学家狄利克雷在数学领域成就显著,以其命名的函数
被称为狄利克雷函数,其中R为实数集,Q为有理数集,以下命题正确的个数是( )
下面给出关于狄利克雷函数f(x)的五个结论:
①对于任意的x∈R,都有f(f(x))=1;
②函数f(x)偶函数;
③函数f(x)的值域是{0,1};
④若T≠0且T为有理数,则f(x+T)=f(x)对任意的x∈R恒成立;
⑤在f(x)图象上存在不同的三个点A,B,C,使得△ABC为等边角形.
A.2B.3C.4D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
.
(1)讨论函数
的单调性;
(2)当
时,若函数
的导函数
的图象与
轴交于
,
两点,其横坐标分别为
,
,线段
的中点的横坐标为
,且
,
恰为函数
的零点,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com