【题目】三国时期吴国数学家赵爽所注《周牌算经》中给出了勾股定理的绝妙证明.右面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实黄实,利用
勾
股
(股
勾)
朱实
黄实
弦实,化简,得勾
股
弦
,设勾股中勾股比为
,若向弦图内随机抛掷
颗图钉(大小忽略不计),则落在黄色图形内的图钉颗数大约为( )(参考数据
,
)
![]()
A.
B.
C.
D.![]()
科目:高中数学 来源: 题型:
【题目】设点
,
的坐标分别为
,
,直线
,
相交于点
,且它们的斜率之积为-2,设点
的轨迹是曲线
.
(1)求曲线
的方程;
(2)已知直线
与曲线
相交于不同两点
、
(均不在坐标轴上的点),设曲线
与
轴的正半轴交于点
,若
,垂足为
且
,求证:直线
恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4 坐标系与参数方程
已知曲线
的极坐标方程为
,曲线
的参数方程为
(
为参数),曲线
的参数方程为
(
为参数).
(Ⅰ)若曲线
与
无公共点,求正实数
的取值范围;
(Ⅱ)若曲线
的参数方程中,
,且曲线
与
交于
,
两点,求
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在如图所示的直角坐标系
中,设军营所在平面区域为
,河岸线所在直线方程为
.假定将军从点
处出发,只要到达军营所在区域即回到军营,则将军可以选择最短路程为_____________.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在矩形ABCD中,AB=3
,BC=3,沿对角线BD将△BCD折起,使点C移到C′点,且C′点在平面ABD上的射影O恰在AB上.
![]()
(1)求证:BC′⊥平面AC′D;
(2)求点A到平面BC′D的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生0到9之间取整数值的随机数,指定2,4,6,8表示命中十环,0,1,3,5,7,9表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:
321 421 292 925 274 632 800 478 598 663 531 297 396
021 506 318 230 113 507 965
据此估计,小张三次射击恰有两次命中十环的概率为()
A. 0.25B. 0.30C. 0.35D. 0.40
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,拋物线的顶点
在坐标原点,焦点在
轴负半轴上,过点
作直线
与拋物线相交于
两点,且满足
.
![]()
(1)求直线
和拋物线的方程;
(2)当拋物线上一动点
从点
运动到点
时,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系
中,直线
过原点且倾斜角为
.以坐标原点
为极点,
轴正半轴为极轴建立坐标系,曲线
的极坐标方程为
.在平面直角坐标系
中,曲线
与曲线
关于直线
对称.
(Ⅰ)求曲线
的极坐标方程;
(Ⅱ)若直线
过原点且倾斜角为
,设直线
与曲线
相交于
,
两点,直线
与曲线
相交于
,
两点,当
变化时,求
面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com