[2012·天津卷] 如图1-4,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2
,PD=CD=2.
(1)求异面直线PA与BC所成角的正切值;
(2)证明平面PDC⊥平面ABCD;
(3)求直线PB与平面ABCD所成角的正弦值.
![]()
图1-4
解:(1)如图所示,在四棱锥P-ABCD中,因为底面ABCD是矩形,所以AD=BC且AD∥BC,又因为AD⊥PD,故∠PAD为异面直线PA与BC所成的角.
在Rt△PDA中,tan∠PAD=
=2.
所以,异面直线PA与BC所成角的正切值为2.
![]()
(2)证明:由于底面ABCD是矩形,故AD⊥CD,又由于AD⊥PD,CD∩PD=D,因此AD⊥平面PDC,而AD⊂平面ABCD,所以平面PDC⊥平面ABCD.
(3)在平面PDC内,过点P作PE⊥CD交直线CD于点E,连接EB.
由于平面PDC⊥平面ABCD,而直线CD是平面PDC与平面ABCD的交线,故PE⊥平面ABCD.由此得∠PBE为直线PB与平面ABCD所成的角.
在△PDC中,由于PD=CD=2,PC=2
,可得∠PCD=30°.
在Rt△PEC中,PE=PCsin30°=
.
由AD∥BC,AD⊥平面PDC,得BC⊥平面PDC,因此BC⊥PC.
在Rt△PCB中,PB=
=
.
在Rt△PEB中,sin∠PBE=
=
.
所以直线PB与平面ABCD所成角的正弦值为
.
科目:高中数学 来源: 题型:
[2012·天津卷] 如图1-4,在四棱锥P-ABCD中,底面ABCD是矩形,AD⊥PD,BC=1,PC=2
,PD=CD=2.
(1)求异面直线PA与BC所成角的正切值;
(2)证明平面PDC⊥平面ABCD;
(3)求直线PB与平面ABCD所成角的正弦值.
![]()
图1-4
查看答案和解析>>
科目:高中数学 来源: 题型:
.(2012年高考天津卷理科19)(本小题满分14分)设椭圆![]()
的左、右顶点分别为
,点P在椭圆上且异于
两点,
为坐标原点.
(Ⅰ)若直线
与
的斜率之积为
,求椭圆的离心率;
(Ⅱ)若
,证明:直线
的斜率
满足
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com