【题目】已知数列
中,
,数列
满足
.
(1)求证:数列
是等差数列,写出
的通项公式;
(2)求数列
的通项公式及数列
中的最大项与最小项.
【答案】(1)详见解析;(2)
,
.
【解析】试题分析:(Ⅰ)首先通过已知条件
化简变形,凑出
这种形式,凑出
常数,
就可以证明数列
是等差数列,并利用等差数列的通项公式求出
通项公式;(Ⅱ)因为
与
有关,所以利用
的通项公式求出数列
的通项公式,把通项公式看成函数,利用函数图像求最大值和最小值.
试题解析:(Ⅰ)∵
,∴
,∴
,
∴
,∴数列
是以1为公差的等差数列. 4分
∵
,∴
,又∵
,
,
∴
是以
为首项,
为公差的等差中项.
∴
,
. 7分
(Ⅱ)∵
,
,
.
∴作函数
的图像如图所示:
![]()
∴由图知,在数列
中,最大项为
,最小项为
. 13分
另解:
,当
时,数列
是递减数列,且
.
列举
;
;
.所以在数列
中,最大项为
,最小项为
.
科目:高中数学 来源: 题型:
【题目】如图:区域A是正方形OABC(含边界),区域B是三角形ABC(含边界)。
(Ⅰ)向区域A随机抛掷一粒黄豆,求黄豆落在区域B的概率;
(Ⅱ)若x,y分别表示甲、乙两人各掷一次骰子所得的点数,求点(x,y)落在区域B的概率;
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆方程
,其左焦点、上顶点和左顶点分别为
,
,
,坐标原点为
,且线段
,
,
的长度成等差数列.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若过点
的一条直线
交椭圆于点
,
,交
轴于点
,使得线段
被点
,
三等分,求直线
的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在海岛A上有一座海拔1千米的山,山顶设有一个观察站P,上午11时,测得一轮船在岛北偏东30°,俯角为30°的B处,到11时10分又测得该船在岛北偏西60°,俯角为60°的C处. ![]()
(1)求船的航行速度是每小时多少千米?
(2)又经过一段时间后,船到达海岛的正西方向的D处,问此时船距岛A有多远?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是平行四边行,
平面
,
//
,
,
,
.
![]()
(1)证明:
//平面
;
(2)求证:平面
平面
;
(3)求直线
与平面
所成角的正弦值;
(4)求二面角
的平面角的正切值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com