精英家教网 > 高中数学 > 题目详情
(1-2x)2n-1展开式中,二项式系数最大的项是(    )

A.第n-1项                                          B.第n项

C.第n-1项与第n+1项                           D.第n项与第n+1项

答案:D

解析:中间项的二项式系数最大为,即是第n项与第n+1项的二项式系数最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

例1:试判断以下各组函数是否表示同一函数?
(1)f(x)=
x2
,g(x)=
3x3

(2)f(x)=
|x|
x
,g(x)=
1      x≥0
-1    x<0

(3)f(x)=
2n+1x2n+1
,g(x)=(
2n-1x
2n-1(n∈N*);
(4)f(x)=
x
x+1
,g(x)=
x2+x

(5)f(x)=x2-2x-1,g(t)=t2-2t-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,对任意的n∈N*,点(an,Sn)都在直线2x-y-2=0的图象上.
(1)求{an}的通项公式;
(2)是否存在等差数列{bn},使得a1b1+a2b2+…+anbn=(n-1)•2n+1+2对一切n∈N*都成立?若存在,求出{bn}的通项公式;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下各组两个函数相等的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)设函数T(x)=
2x,  0≤x<
1
2
2(1-x),  
1
2
≤x≤1

(1)求函数y=T(sin(
π
2
x))和y=sin(
π
2
T(x))的解析式;
(2)是否存在非负实数a,使得aT(x)=T(ax)恒成立,若存在,求出a的值;若不存在,请说明理由;
(3)定义Tn+1(x)=Tn(T(x)),且T1(x)=T(x),(n∈N*
①当x∈[0,
1
2n
]时,求y=Tn(x)的解析式;
已知下面正确的命题:当x∈[
i-1
2n
i+1
2n
](i∈N*,1≤i≤2n-1)时,都有Tn(x)=Tn
i
2n-1
-x)恒成立.
②对于给定的正整数m,若方程Tm(x)=kx恰有2m个不同的实数根,确定k的取值范围;若将这些根从小到大排列组成数列{xn}(1≤n≤2m),求数列{xn}所有2m项的和.

查看答案和解析>>

同步练习册答案